ADAM™

TECHNICAL REFERENCE MANUAL

PRELIMINARY RELEASE

COLECO INDUSTRIES, INC

ACKNOWLEDGEMENTS

Editor: Maria Higgini

Technical Consultants: David K. Hwang

Robert F. Jepson

Cover Design: Laura Shea

COLECO MAKES NO REPRESENTATIONS OR WARRANTIES WHATSOEVER, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, IN CONNECTION WITH THE MATERIALS CONTAINED HEREIN, AND SUCH MATERIALS ARE DISCLOSED AS IS. COLECO SHALL HAVE NO LIABILITY FOR ANY LOSSES CAUSED TO RECIPIENTS OF THESE MATERIALS BY REASON OF ANY CHANGES OR MODIFICATIONS MADE BY COLECO IN THESE MATERIALS AFTER THEIR DISCLOSURE HEREIN. IN ADDITION, COLECO SHALL HAVE NO LIABILITY FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT OR INCIDENTAL DAMAGES OR LOSSES WHATSOEVER, INCLUDING LOSS OF PROFITS, IN CONNECTION WITH THE USE OF THE MATERIALS DISCLOSED HEREIN.

© 1984 Coleco Industries, Inc.

All rights reserved

ADAM", SmartBASIC", SmartWRITER", and AdamNET" are trade-marks of Coleco Industries, Inc. ColecoVision® is a registered trademark of Coleco Industries, Inc. Buck Rogers" indicates a trademark of the Dille Family Trust © 1982 The Dille Family Trust. Planet of Zoom" and SEGA® are trademarks of SEGA Enterprises, Inc. ©1982 SEGA Enterprises, Inc.

PREFACE

The ADAM Family Computer System Technical Reference Manual is a source of technical information for both hardware and software designers. This preliminary release of the manual includes the most essential information. Future releases will address optional peripherals, additional tools and utilities, and further detailed information on the basic ADAM system.

Operating system source code listings may be requested with the form on the last page of this manual.

Chapter 1 is a general introduction and orientation to ADAM.

Chapter 2, Hardware, describes ADAM's hardware architecture, and discusses the function of each major component.

Chapter 3, Software, includes information on memory configurations, the operating system and the external I/O bus, AdamNet. Application software is also discussed.

Chapter 4, Optional Peripherals, describes Coleco-engineered hard-ware peripherals available for ADAM. This chapter will be developed as new peripherals become available.

Chapter 5, Development Tools and Utilities, includes information on both software and hardware tools that aid development of Adam software and peripherals.

The Technical Reference Manual is not a general user's manual. For information on setting up and using the system, refer to the manuals provided with ADAM:

Getting Started: the ADAM Set-Up Manual

Typing with ADAM: the ADAM Word Processing Manual

Programming with ADAM: The SmartBASIC Manual

TABLE OF CONTENTS

Preface

Chapter 1:	General Introduction
1. Fig. 1-1 Fig. 1-2	Hardware Overview ADAM Home Computer System Set-Up Diagram Expansion Module #3 Set-Up Diagram
2. Fig 1-3	Software Overview Adam Software Architecture
Chapter 2:	Hardware
Fig. 2-2 2.1 2.1.1 Fig. 2-3 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.7a 2.1.7b 2.1.7c	Memory and I/O Board Block Diagram Master 6801 Microcomputer Memory Input/Output Controller (MIOC) ROM Circuitry Dynamic RAM Circuitry AdamNet Interface Circuitry Card-Edge Expansion Connectors Connector #1 Connector #2 Connector #3 Expansion Port
Fig. 2-4 2.2.2	Theory of Operation Block Diagram: CPU Board Z80 Microprocessor ROM Circuitry
2.3 2.3.1 2.3.2 2.3.3	Data Pack Drive Theory of Operation Servo Printed Circuit Board Read Write Printed Circuit Board

2.3.4 Data Pack Specifications 2.3.5 I/O Signals between Memory and I/O Board and Data Drive 2.4 Differences of Expansion Module 3 3. The Keyboard 3.1 Theory of Operation 3.2 Interconnects 4. The Printer 4.1 Theory of Operation Printer Board 4.2 4.3 Interconnects 5. Game Controllers Fig. 2-5 Game Controller Configuration 6. Power Supply 6.1 Power Supply Voltage 6.2 Excessive Current Output Protection Printer/Memory Console Interface Cable 6.3 6.4 Power Supply Output to CPU (via Printer/Memory Console Interface Cable) 6.5 Power Supply Output to Printer Software Chapter 3: 1. Introduction 2. Memory Map and Power/Up Reset Procedure 2.1 Lower Memory Options 2.2 Upper Memory Options 2.3 Power Up/Computer Reset Procedures 2.4 Z80 I/O Port Assignments Memory Map Control 2.5 Reset Procedures 3. 3.1 AdamNet Introduction Fig. 3-1 Bus Network 3.2 Network Master Concept Fig 3-2 MAC Internals 3.3 Message Philosphy and Definition 3.4 Error Control Fig. 3-3 Error Control 3.5 Class Of Service Concept 3.6 Power Up/Initialization 3.7 Link Speed 3.8 Master Node Interface Functional Overview - Z80 and 6801 Master 3.9 4. Operating System 4.1 EOS

```
Fig. 3-4
              EOS Memory Map
    4.1.1
              EOS Overwrite Addresses
    4.1.2
              EOS Files
    4.1.3
              File Types and Headers
    4.1.4
              EOS Executive Calls
    4.1.5
              EOS Routines Adapted from OS 7
    4.1.6
              Initializing EOS
    4.1.7
              EOS Entry Points
    4.1.8
              EOS Error Codes
    4.2
              OS 7
    4.2.1
              Introduction
    4.2.2
              Graphics Generation Software
    4.2.3
              Sound Generation Software
    4.2.4
              Interrupt Handling and Write Deferral Software
    4.2.5
              Timing Software
    4.2.6
              Controller Interface
    4.2.7
              Boot-Up Software
    4.2.8
              Miscellaneous Utilities
    4.2.9
              Defined Reference Locations
    5.
              Tape Format and Other Tape Considerations
    6.
              SmartWRITER
    6.1
              Memory Map
    6.2
              SmartWRITER-Compatible Files
    7.
              SmartBASIC
    7.1
              Memory Map
    8.
              Super Games and Other Programs Using OS7
    8.1
              Memory Map
              ROM-based Cartridge Programs
    9.1
              Memory Map
Chapter 4: Optional Peripherals
Chapter 5: Development Tools and Utilities
    1.
              Super Game Guidelines
Appendices
              Keyboard Table
    1.
    2.
              ADAM Emulation Considerations
   3.
              The ColecoVision Programmers Manual - Detail Sections
    4 -
              Schematics and Component Location/Identification
                Drawings
    4.1
              Memory and I/O Board Schematic (Sheet 1)
    4.1
              Memory and I/O Board Schematic (Sheet 2)
```

ADAM™ TECHNICAL REFERENCE MANUAL PRELIMINARY RELEASE

4.1	Memory and I/O Board Component Location/Identification Drawing
4.2	CPU Board Schematic
4.2	CPU Board Component Location/Identification Drawing
4.3	Interconnect Board Schematic
4.3	Interconnect Board Component Location/Identification Drawing
4.4	Linear Power Supply Schematic
4.4	Linear Power Supply Component Location/Identification
	Drawing
4.4	Linear Power Supply Sub-Assembly

CHAPTER 1: GENERAL INTRODUCTION

1. Hardware Overview

The ADAM Family Computer System consists of three major components: the memory console, the keyboard, and the printer. The consumer provides his own TV or monitor. Other equipment provided with the system are two "joystick" game controllers, various cords and cables to connect the components, and an antenna switch box.

The memory console houses the main memory and CPU of the system, and one data pack drive. Space and connectors are provided for another drive. Two printed circuit boards contain 64K RAM, 16K video RAM, an expansion port, two AdamNet ports, three card connectors and a cartridge slot. Two additional printed circuit boards control the drives.

The system reads from and stores on digital data packs. Digital data packs are a reel to reel magnetic tape encased in a Lexan cassette. Each data pack can store up to 256K bytes.

The keyboard has 75 full travel keys, including ten command keys and six programmable function keys. A "power on" LED indicator on the right side of the keyboard shows when the system is on. The keyboard contains one printed circuit board.

The printer is a letter-quality, bi-directional, daisy wheel printer. Paper feeds into the printer through a friction-feed mechanism that accommodates single sheets of paper up to 9½ inches wide. With the addition of an optional tractor-feed mechanism, the printer also accommodates continuous, "fan-fold" paper. Pitch is 10 characters to the inch, and printing speed is 10 characters per second. The printer contains two printed circuit boards, one for the printer and one for the power supply.

The computer's power supply, which produces 4 regulated DC voltages, is housed in the printer.

ADAM is available in two models, the complete system and Expansion Module #3. When the memory console of Expansion Module #3 is connected to ColecoVision, the two models are essentially identical in function. Figures 1-1 and 1-2 show how the components for each models are connected.

The block diagram in Figure 2-1 represents a high-level view of the system's hardware design. The major elements in the

block diagram is discussed in greater detail in Chapter 2, Hardware.

FIGURE 1-1: ADAM HOME COMPUTER SYSTEM SET UP DIAGRAM

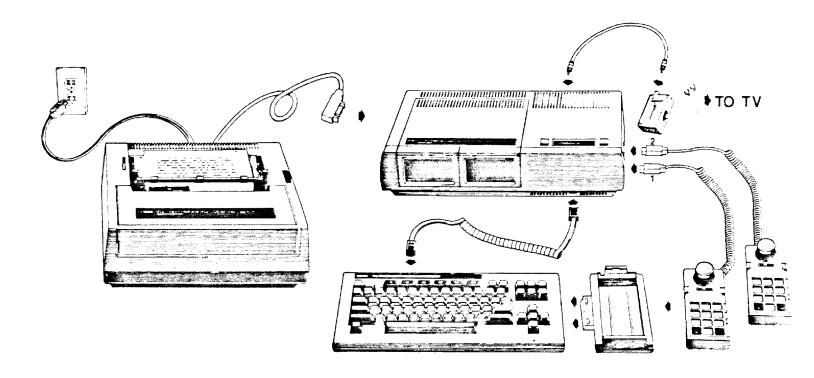
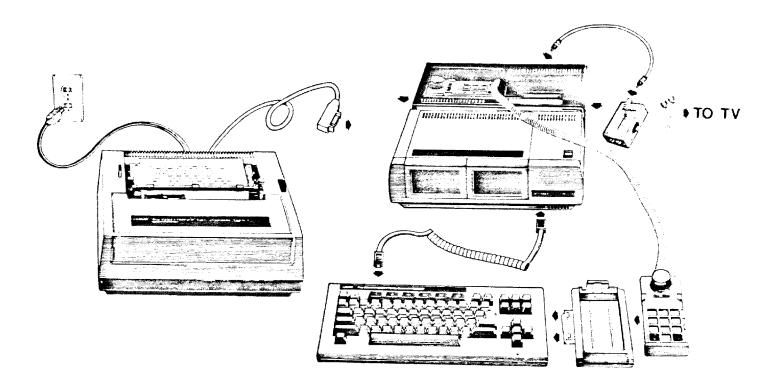
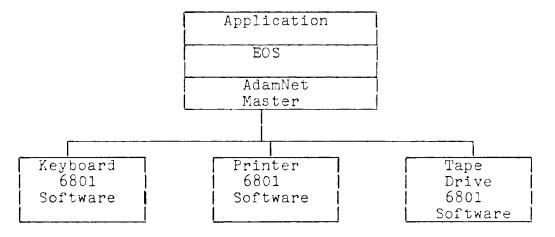



FIGURE 1-2: EXPANSION MODULE #3 SET UP DIAGRAM

1.2 Software Overview

ADAM's hardware components are linked together by a 62.5K bps, half-duplex, shared serial bus, known as AdamNet.

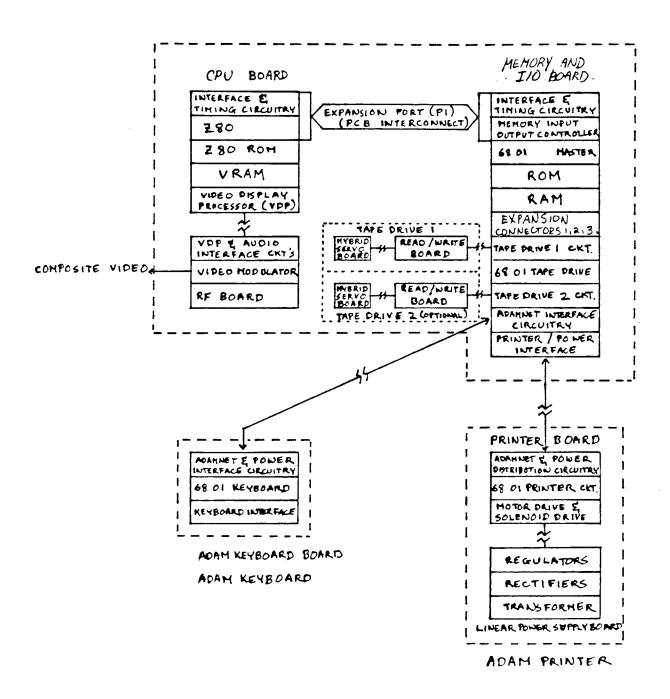

EOS (Elementary Operating System) is a collection of service routines that provides input and output facilities to peripheral devices, in such a way that application programs need not address the physical characteristics of the peripherals or the operation of AdamNet. EOS also provides file management for manipulating data on mass storage devices.

OS_7 is a run-time user's library of software modules that controls graphics, sound, timing, etc. EOS contains many modules equivalent to OS_7 modules, but some have different inputs and outputs.

ADAM contains a ROM-based electric typewriter/word processor/editor called SmartWRITER. SmartBASIC and the Buck Rogers Planet Of Zoom Super Game are included with Adam on data packs.

Each of ADAM's software components is discussed in greater detail in Chapter 3. Figure 1-3 depicts Adam's software architecture.

FIGURE 1-3: ADAM SOFTWARE ARCHITECTURE


CHAPTER 2: HARDWARE

1. <u>Introduction</u>

This chapter presents technical information on each of the major logical components of ADAM identified in the System Block Diagram, Figure 2-1. The Appendix contains schematics and component location/identification drawings.

For the convenience of hardware developers, pin and signal connections for all expansion connectors are given. The Memory Console provides a total of four expansion connectors. Three female card edge connectors are accessed by removing the top cover of the Memory Console. These are referred to as expansion connectors #1, #2 and #3. One male card edge connector extends from the right side of the Memory Console. This is referred to as the Expansion Port.

FIGURE 2-1: SYSTEM BLOCK DIAGRAM

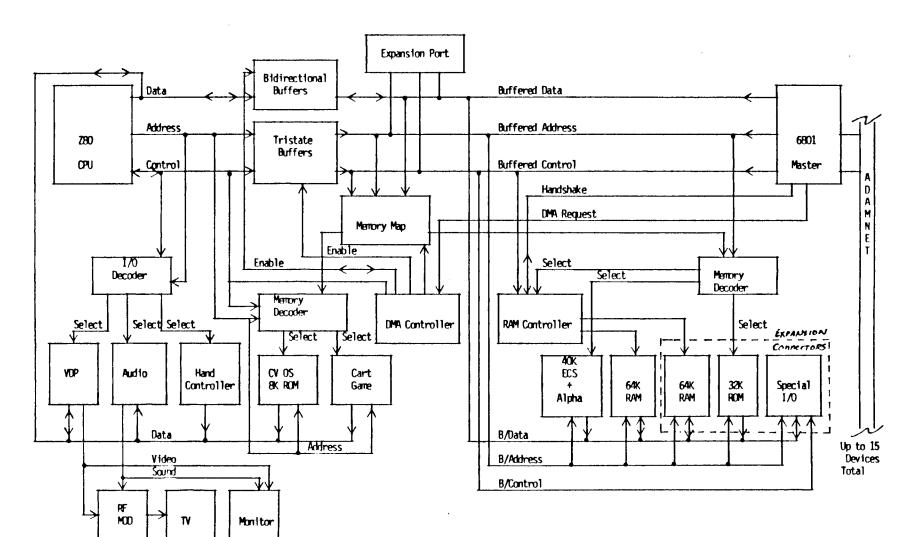
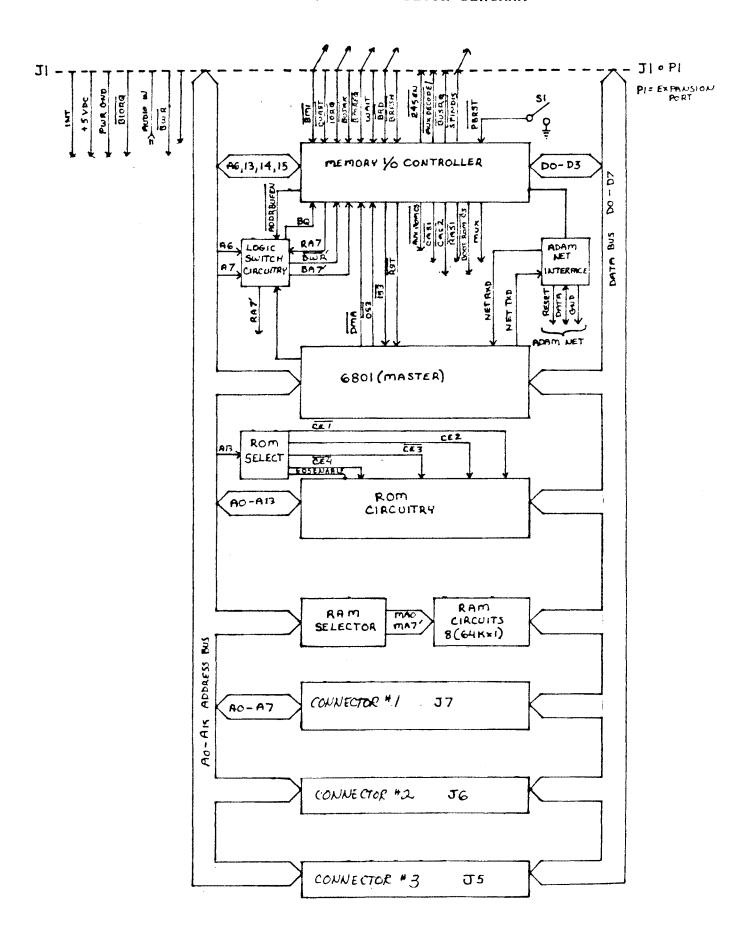


FIGURE 2-2: SYSTEM FLOW DIAGRAM


2. THE MEMORY CONSOLE

2.1 The Memory and I/O Printed Circuit Board

2.1.1 Theory of Operation

The Memory and I/O Board contains the 6801 Master microcomputer, 72K bytes of RAM and provisions for up to 72K of ROM/EPROM. This board provides the circuitry required to interface the keyboard, printer, tape drive and future options. Three card-edge connectors provide access for future options. An expansion port provides access for external peripherals. A custom LSI circuit, the Memory Input Output Controller (MIOC), interfaces the 6801 Master microcomputer with the Z80 microprocessor on the CPU Board. Another 6801 microcomputer on the Memory and I/O Board controls the operation of the tape drive interface circuitry.

FIGURE 2-2: THE MEMORY AND I/O BOARD BLOCK DIAGRAM

2.1.2 The Master 6801 Microcomputer

The Master 6801 microcomputer's primary function is to control system access to the keyboard, printer, tape drive and future peripherals. The Master 6801 microcomputer is a front end network processor that supports the Z80. The Master 6801 communicates with the Z80 via the Memory Input Output Controller. The Master 6801 reads and writes information to and from network peripherals on command by the Z80.

The 6801 chip provides 2048 bytes of ROM, 128 bytes of RAM and a UART. The Master 6801 is configured for single chip mode operation and runs, as do Adam's other 6801's, at a 1MHZ rate. This frequency is derived from an external 4MHZ crystal and the 6801's internal divide-by-4 circuitry.

2.1.3 The Memory Input Output Controller (MIOC)

The Memory Input Output Controller is a 40-pin IC that interfaces two dissimilar microprocessers (the Z80 and the Master 6801) by performing the proper decoding and timing functions. It is responsible for selecting the memory configuration (Refer to Chapter 3, Section 2). The MIOC has 22 input signals, 16 output signals, power and ground.

2.1.4 ROM Circuitry

Room is provided on the Memory and I/O Board for up to 40K of ROM. ROM selection is controlled by a decoder circuit which is driven by A13, BOOTROMCS and EOS ENABLE. The Memory and I/O Board ROM circuit contains EOS (Elementary Operating System) software.

2.1.5 Dynamic RAM Circuitry

The dynamic RAM circuit consists of eight 64K RAM chips arranged so that each represents one specific data bus bit. Information written to or read from RAM is controlled by the BWR, RAS and CAS1 signals. The latched Z80 address bus BAO - BA15 (or BAO - BA6, RA7, BA8 - BA15) is provided along with MUX from the MIOC to the two data selector multiplexers, which output MAO - MA7 (or RA7) to the DRAM address bus. The Z80 provides a 7-bit refresh address after each instruction fetch. The MIOC generates an eighth bit for 256-refresh cycle dynamic RAMS. See Appendix 2, Adam Emulation Considerations for further information.

2.1.6 AdamNet Interface Circuitry

A quad comparator circuit provides data to and from the Master 6801 microcomputer via a half-duplex 62.5 kilobaud

serial network called AdamNET. The comparator also can reset all the devices on AdamNET via MIOC control. AdamNET links the tape drive, printer and keyboard to the Master 6801. Each of these peripherals has a 6801 and a quad comparator circuit that control AdamNET. Besides the data signal and reset signal, ground and power are provided as part of the AdamNET bus.

2.1.7 Card Edge Expansion Connectors

Three card edge connectors are provided for future development. Refer to Subsection 2.1.9 for pin connections.

2.1.7a Connector #1

This connector is soldered to the Memory and I/O Board, and is labelled J7.

2.1.7b Connector #2

This connector is designed for expansion ROM and I/O devices and is soldered to the Memory and I/O Board. It is labelled J6.

2.1.7c Connector #3

This connector allows for expansion RAM and/or ROM up to $64\,\mathrm{K}$ bytes, and is labelled J5.

2.1.8 Expansion Port

The expansion port is connected to the Memory and I/O Board at P1.

_Pin	Туре	Refer Table	Го	Pin	Type Re	fer To Table
1 2	Ground Ground			31 32	Audio input Video input enable + 9VDC	
3 4 5	BD3 Tristate, I/O BA14 Tristate output Y2 LS138 decoder output		2 33 2		SC Composite video input, 6VDC, 1.5 VAC GAME MODE RESET output Sound chip 76489 disab	le.
6 7 8 9	Y1 LS138 decoder out HALT input BWR Tristate output NMT input/output SPINNER INT DISABLE	put 1, 1 1, 1	2	36 37	O Volts DC Not in use BAll Tristate output BAl2 Tristate output VDP Sync/Reset input	1, 2 1, 2 1
11 12 13 14 15 16 17 19 19 21 22 24 25 26 27 29 30	input BUSRQ input BD1 Tristate, I/O Z80 Reset input BD0 Tristate, I/O BM1 Tristate output BD7 Tristate, I/O BD6 Tristate, I/O BA1 Tristate output BD4 Tristate output BD4 Tristate output BA2 Tristate BA4 Tristate output BA5 Tristate output BA6 Tristate output BA7 Tristate output BA7 Tristate output BA8 Tristate output BA9 Tristate output BA9 Tristate output BA10 Tristate output AUX DECODE 1 input AUX DECODE 2	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		4444444445555555555566 012345678901234567890	BIORQ Tristate output Not used Not used BA15 Tristate output BA3 Tristate output B03.58 MHz clock BD2 Tristate, I/O BA0 Tristate output BD5 Tristate, I/O BRFSH Tristate output WAIT input INT input BUSAK output BRD Tristate output BRD Tristate output AUDIO 76489 RDY output +12V +5V	1 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1,

 \overline{X} - Denotes active low

TABLE 1: DC CHARACTERISTICS

Symb	ol Parameter	Min	Тур	Max	Units	Test Conditions
VIL	Input low voltage	-0.3		0.8	V	
VIH	Input high voltage	2.0		Vcc	V	
VOL	Output low voltage			0.4	V	$I_{OL} = 1.8 mA$
V _{OH}	Output high voltag	e 2.4			V	I _{OH} = 250uA
ILI	Input leakage curr	ent		<u>+</u> 10	uA	$V_{IN} = 0 to V_{cc}$
ILO	Tri-state output Leakage current i	n float		<u>+</u> 10	uA	$V_{OUT} = 0.4V \text{ to}$

TABLE 2: TIMING REFERENCE TABLE

[]* See notes at end of table

[], see :	notes at er.	d of table	MITAI	V A M
SIGNAL	SYMBOL	PARAMETER	MIN (ns)	MAX (ns)
A0-15 D0-7	tD(AD) tF(AD) tacm taci tca tcaf tD(D) tF(D) tST(D)	Address output delay Delay to float Address stable prior to MREQ (memory cycle) Address stable prior to TORQ, RD or WR (I/O cycle) Address stable from RD, WR TORQ or MREQ Address stable from RD or WR during float Data output delay Delay to float during write cycle Data setup time to rising edge of clock during Ml cycle Data setup time to falling edge	(ns) [1]* [2]* [3]* [4]* [4]*	(ns) 110 90 150 90
MREQ	tdcm tdci tdcf tH tDLΦ(MR)	at clock during M2 to M5 Data stable prior to WR (memory cycle) Data stable prior to WR (I/O cycle) Data stable from WR Input hold time MREQ delay from falling edge of clock, MREQ low	50 [5]* [6]* [7]* 0 20	85
	tDH©(MR) tDH©(MR) tw(MRL) tw(MRH)	MREQ delay from rising edge of clock, MREQ high MREQ delay from falling edge of clock MREQ high Pulse width, MREQ low Pulse width, MREQ high	 [8]* [9]*	 85 85
IORQ	tDL©(IR)	IORQ delay from rising edge of clock IORQ low IORQ delay from falling edge of clock IORQ low IORQ delay from rising edge of clock, IORQ high	1 	 75 85 85
į L	tDHÇ(IR)	IORQ delay from falling edge of clock, IORQ high		85

TABLE 2: TIMING REFERENCE TABLE (Cont'd)

[]* See notes at end of table

[] 2ee	notes at en	nd of table		
SIGNAL	SYMBOL	PARAMETER	MIN (ns)	MAX (ns)
RD	tDLΦ(RD)	RD delay from rising edge of clock, RD low		85 I
!	t _{DL⊕(RD)} 	RD delay <u>from falling</u> edge ofclock, RD low	 	95
! !	tDHΦ(RD)	_RD high	15	85
 	tDHΦ(BD)	RD delay \underline{fr} om falling edge of clock, \overline{RD} high		85
WR	 t _{DL@(WR)} 	WR delay from rising edge of clock, WR low	 	 65
 	t _{DL} ą(wr) 	WR delay <u>from</u> falling edge ofclock, \overline{WR} low		80
<u> </u>	tDH亞(WR) 	WR delay <u>fr</u> om falling edge of clock, WR h <u>ig</u> h		80
	$t_{W}(\overline{WRL})$	Pulse width, \overline{WR} low	[10] *	
M1	tDL(M1)	MI delay from rising edge of clock Ml low		100
	t _{DH(M1)}	MI delay from rising edge of clock Ml high		100
RFSH	t _{DL(RF)}	RFSH delay from rising edge of clock, RFSH low		130
	t _{DH} (RF)	RFSH delay from rising edge of clock, RFSH high		120
WAIT	ts(WT)	WAIT setup time to falling edge of clock	70	
HALT	tD(HT)	HALT delay time from falling edge of clock		300
INT	^t s(IT)	INT setup time to rising edge of clock	80	

TABLE 2: TIMING REFERENCE TABLE (Cont)

[]* See r	notes at en	d of table		
SIGNAL	SYMBOL	PARAMETER	MIN (ns)	MAX (ns)
NMI	tw(NMI)	Pulse width, NMT low	80	
BUSRQ	ts(BQ)	BUSRQ setup time to rising edge of clock	50	
BUSAK	t _{DL(BA)}	BUSAK delay from rising edge of clock, BUSAK low BUSAK delay from falling edge of clock, BUSAK high		100
RESET	t _{s(RS)}	RESET setup time to rising edge of clock	60	
	t _F (C)	Delay to/from float ($\overline{\text{MREQ}}$, $\overline{\text{IORQ}}$, $\overline{\text{RD}}$, and $\overline{\text{WR}}$		80
	t _{mr}	$\overline{\text{Ml}}$ stable prior to $\overline{\text{IORQ}}$ (interrupt Ack.)	[11]*	

Timing Reference Table Notes

```
\begin{array}{l} t_{acm} = t_w & (\emptyset H) + t_f - 65 \\ taci = t_c - 70 \\ tca = t_w & (\emptyset L) + t_r - 50 \end{array}
  [1]
 1234 56
           t_{caf} = t_{w} (\emptyset L) + t_{r} - 45

t_{dem} = t_{c} - 170
           tdci = t_w (\emptyset L) + t_r - 170
           t_{cdf} = t_{w} (\tilde{p}_{L}) + t_{r} - 70
t_{w} (\underline{MRL}) = t_{c} - 30
  [7]
  [8]
           t_{W}(\overline{MRH}) = t_{W}(\emptyset H) + t_{f} - 20
  [9]
           t_{\rm W} (WRL) = t_{\rm C} - 30

t_{\rm mr} = 2t_{\rm C} + t_{\rm W} (ØH) + t_{\rm f} - 65
[10]
[11]
           t_c = clock period: 279.36 ns + .01
           t_{W}(\emptyset H) = clock pulse width, clock High = 120 ns min
           t_{W}(\emptyset L) = clock pulse width, clock Low = 120 ns min
           tf = clock fall time = 15 ns max
           tr = clock rise time = 15 ns max
```

2.1.9 Interconnects

Memory and I/O Board/CPU Board 2.1.9a

The Memory and I/O Board is connected to the CPU Board at J1, with two 30-pin ribbon cables and a dual 30-pin card edge connector.

Signal	Description
BD0-BD7	8 bidirectional data lines. BDO is least significant, BD7 is most significant.
BAO-BA15	16 address lines to Memory and I/O Board. BAO is least significant, BA15 is most significant.
BWR	Output of Z80 to Memory and I/O Board; write strobe used to output data during an I/O or memory operation. Indicates a write operation.
BRD	Output of Z80 to Memory and I/O Board; read strobe used to clock data into the Z80 during an I/O or memory operation.
BMREQ	Output of Z80 to Memory and I/O Board; indicates present read or write operation is directed to memory or memory-mapped devices.
IORQ BIORQ	Same as BMREQ, but indicates an I/O operation instead of memory or memory-mapped devices
BRFSH	Output of Z80 to Memory and I/O Board; indicates BAO-BA6 contain a row address for the required dynamic memory refresh. (An eighth row address bit is generated by the MIOC 'RA7'.)
RST	Generated by the MIOC as a result of either a game CVRST or computer PBRST reset. It connects to and resets the Colecovision or CPU Board.
В₫	System clock generated on Colecovision or CPU Boards. Line connects to Memory and

I/O Board.

WAIT

Used to insert extra clock cycles into Z80 timing during opcode fetch cycles and when accessing slow memory or I/O. Excessive use of WAIT causes inadequate dynamic RAM refresh.

ADDRBUFEN

An active low signal enables the address and control signal buffers between the Colecovision or CPU Board, and the Memory and I/O Board. The control signals are BRD, BWR, BRFSH, BMREQ, BM1, and BIORQ. high level disables these signals from the Z80, and allows them to go tristate (high-impedance). This occurs during a DMA cycle where another device needs to access memory or devices on the Memory and I/O Board. See BUSRQ and BUSAK.

245EN

Same as ADDRBUFEN except 245EN controls the buffer for BDO through BD7 data lines to CPU or Colecovision buffer board.

BUSAK(buffered)

BUSRQ(unbuffered) BUSRQ is generated by the MIOC as the result of a DMA request. The BUSRQ signal requests that the Z80 relinquish the address and data busses and certain control signals at the end of its current cycle. After receiving the BUSRQ the Z80 responds with a BUSAK signal to indicate it has relinquished the bus. The Z80 remains in an inactive state until the controlling device removes the $\overline{\text{BUSRQ}}$ signal. The $\overline{\text{BUSRQ}}$ line connects to the Colecovision or CPU Board. Generally, only the master 6801 may assert a BUSRQ.

BM1

Output of Z80 from CPU or Colecovision Board; indicates the present memory cycle is an opcode fetch (start of next instruction).

CVRST

This signal generates an $\overline{\text{RST}}$ to the Z80 processor. Also reset are the MIOC and master 6801. CVRST initializes the MIOC memory map such that addresses from 0-1FFFH enable the OS-7 ROM; 2000H through 7FFFH enable RAM1; and 8000H through FFFFH enables the game cartridge.

AUXDECODE1

Generated by Memory and I/O Board. Selects or deselects the OS-7 ROM.

 $\overline{\mathtt{INT}}$

Active low, this signal is an input to the Z80 and results in a maskable interrupt which directs the Z80 to respond to some external event.

SPINDIS

Allows disabling of spinner interrupts by the hand controllers. Active low.

Audio Out
Audio In
AUX VID
VID GATE
CLK, RSTDIS
SEL4, SEL2
HALT, NMI
AUXDECODE2
VIDRST

These signals are not used on the Memory and I/O Board but are made available at the expansion connector.

BMREQ

PRELIMI	NARY RELEASE	CHAPTER 2 HARDWARE
2.1.9b	Interconnects	for Connector #1 at J7
	BD0-BD7	8 bidirectional data lines. BDO is least significant, BD7 is most significant.
	BAO-BA7	Address lines to Memory and I/O Board. BAO is least significant, BA7 is most significant.
	BWR	Output of Z80 to Memory and I/O Board; write strobe used to output data during an I/O or memory operation. Indicates a write operation.
	BRD	Output of Z80 to Memory and I/O Board; read strobe used to clock data into the Z80 during an I/O or memory operation.
	IORQ BIORQ	Same as $\overline{\text{BMREQ}}$, but indicates an I/O operation instead of memory or memory-mapped devices.
	ВМ1	Output of Z80 from CPU or Coleco- vision Board; indicates the present memory cycle is an opcode fetch (start of next instruction).
	ĪNT	Active low, this signal is an input to the Z80 and results in a maskable interrupt which directs the Z80 to respond to some external event.
2.1.9c	Interconnects	for Connector #2 at J6
	BDO-BD7	8 bidirectional data lines. BDO is least significant, BD7 is most significant.
	BAO-BA15	16 address lines to Memory and I/O Board. BAO is least significant, BA15 is most significant.
	BWR	Output of Z80 to Memory and I/O Board; write strobe used to output data during an I/O or memory operation. Indicates a write operation.
	BRD	Output of Z80 to Memory and I/O Board; read strobe used to clock data into the Z80 during

an I/O or memory operation.

Output of Z80 to Memory and I/O Board; indicates present read or write operation is

directed to memory or memory-mapped devices.

IORQ Same as BMREQ, but indicates an I/O operation BIORQ instead of memory or memory-mapped devices. IORQ is unbuffered; BIORQ is buffered.

BM1 Output of Z80 from CPU or Coleco-

vision Board; indicates the present memory cycle is an opcode fetch (start of next

instruction).

INT Active low, this signal is an input to the Z80

and results in a maskable interrupt which directs the Z80 to respond to some external

event.

AUDIO IN

2.1.9d Interconnects for Connector #3 at J5

BD0-BD7 8 bidirectional data lines. BDO is least significant, BD7 is most significant.

BAO-BA15 Address lines to Memory and I/O Board. BAO is least significant, BA15 is most significant. RA7 is substituted for BA7.

BWR Output of Z80 to Memory and I/O Board; write strobe used to output data during an I/O or memory operation. Indicates a write operation.

 $\overline{\mathtt{BRD}}$ Output of Z80 to Memory and I/O Board; read strobe used to clock data into the Z80 during an I/O or memory operation.

2.1.9e Other Memory and I/O Board Connections

J2 and AdamNet Connections - The following signals are found on the AdamNet connectors for keyboard and expansion devices.

Data - 62.5K bps serial 'bidirectional' line for data transmission reception by network devices.

Reset - hardware network reset

+5V

Signal Ground

J9 Power Supply/Printer Connector - In addition to containing the signals found on J2 and J8, the necessary power supply voltages of +12V Logic, +12V Inductive, and -5V connect here.

J10 and Data Drive Connectors - For a detailed description of the signals found on the data drive connectors, refer to Subsection 2.3.5.

J1 Cartridge Connector

<u>Pin</u>	Type	<u>Pin</u>	Type	<u>Pin</u>	Type	<u>Pin</u>	Type	<u>Pin</u>	Type
1 · 2 3 4 5 6	D2 CS3* D1 D3 D0 D4	7 8 9 10 11 12	A0 D5 A1 D6 A2 D7	13 14 15 16 17 18	RF ground All A3 A10 A4 CS1*	19 20 21 22 23 24	A13 A14 A5 CS2* A6 A12	25 26 27 28	A7 A9 CS4* A8

30 +5V Typical available current 0.2A

29 Digital Ground

^{*}LS138 Decoder output. Refer to Table 3.

TABLE 3: CARTRIDGE INTERFACE PARAMETERS

Sym bol	Parameter	Conditions		Min Typ	Max	Units
v _{OH}	High level output voltage	$V_{cc} = Min, V_{IH} = 2V$ $V_{IL} = V_{IL} Max, I_{OH} = 1$	- 400 uA	2.7 3.4		Y
$v_{ m OL}$	Low level output voltage	$V_{CC} = Min, V_{IH} = 2V$ $V_{IL} = V_{IL} Max$	l i		0.5	V
VIH	High level input voltage			2		V
VIL	Low level input voltage			ı	0.8	V

2.2 THE CPU BOARD

2.2.1 Theory of Operation

The CPU Board, located in the console of the Adam computer system, consists of six major units: The Z80 Central Processing Unit (CPU), a Video Processor, an Audio Generator, the RF Modulator, Clock Generation and the Game Controller Section. The Z80 is the CPU of the entire computer system all other microprocessors are slaves.

2.2.2 <u>Z80 Microprocessor</u>

The Z80 CPU, which consists of a Z80A microprocessor and a clock circuit for synchronization, has control of the Adam computer system. The Z80 configures the memory map and can switch banks of memory. Refer to Chapter 3, Section 2 for details on the memory configuration.

2.2.3 ROM Circuitry

The CPU Board includes an 8K operating system ROM (OS_7) and a connector for up to 32K of cartridge ROM.

2.2.4 Video Display Processor (VDP)

The Video Display Processor, a Texas Instruments (TI) 9928, generates all video, control and synchronization signals and controls the storage, retrieval and refresh of display data in a dynamic memory, VRAM. The 9928 uses a table-driven architecture that allows the programmer to control every pixel in the visual display area, and to define and control 32 "sprites." Sprites may be placed anywhere on the display and moved at will.

The VDP has three major interfaces: CPU, RF modulator, and VRAM. The VDP is addressable in data mode (used when VRAM is being written or read) and register mode (used when control information is being written to and read from one of the VDP's internal registers). The addresses of the ports in the CPU I/O address space are as follows:

Data Port ...OBEH
Register Port ...OBFH

The video RAM circuit consists of 8 (16384 x 1) RAM integrated circuits. The contents of VRAM define the TV image. AO, $\overline{\text{CSW}}$ and $\overline{\text{CSR}}$ are CPU-controlled input signals to the VDP that control when the data is written to or read from VRAM. The VDP output signals $\overline{\text{R/W}}$, $\overline{\text{CAS}}$ and $\overline{\text{RAS}}$ control the RAM operation.

Data can be transmitted to or from the CPU over the data bus, depending on the state of the Chip Select Write $(\overline{\text{CSW}})$ and Chip Select Read $(\overline{\text{CSR}})$ control lines. When $\overline{\text{CSW}}$ is low, data is transmitted from the CPU to the Video Display Processor. When $\overline{\text{CSR}}$ is low, data is transmitted from the Video Display Processor to the CPU. $\overline{\text{CSR}}$ and $\overline{\text{CSW}}$ should not be simultaneously low.

Another control line, address line AO, determines where the VDP retrieves or sends data. If AO is in a high state, the

data is stored into, or retrieved from an internal register. The register used is determined by the data. If AO is in a low state, the data is stored into or retrieved from the VRAM.

Refer to the Texas Instruments TMS9918A/TMS9928A/TMS9929A Video Display Processors Data Manual for further information.

2.2.5 Sound Generator

The system uses a TI 76489 (6496) sound generator controller to produce sounds. The chip contains three programmable tone generators, a programmable white-noise generator, and programmable attenuation for each of the channels. The chip is addressed through a single write-only port at location OFFH. Wait-request hardware has been included in the system because the sound chip is a slow peripheral requiring data lines to be stable for a relatively long time while it is receiving data.

2.2.6 RF Circuitry

The RF modulator uses the 1889 chip to interface audio, color difference, and luminance signals to the antenna terminals of a TV receiver. It consists of two VHF channels, 3 or 4, selectable by a slide switch with determined LC tank circuits. The Chroma subcarrier is derived from the 3.58 MHz system clock to ensure accuracy and stability. The sound oscillator's frequency modulator is achieved by using a 4.5 MHz tank circuit and deviating the center frequency via a varactor diode. Due to the incompatible signal level between the VDP 9928 and the 1889, a DC restoration circuit ensures the DC level of the video signal.

The $\overline{R-Y}$, $\overline{B-Y}$, and Y signals from the VDP, along with the 3.58 MHz clock and the audio signal from the SN76489 (6496), are provided to the RF modulator to produce the composite video output.

2.2.7 Game Controller Circuitry

The two game controllers are connected to the CPU Board via two "D" type connectors. Each controller is accessed by the system through its own port. See CONT-SCAN in the OS_7 Source Code Listing for details.

For each controller, 18 switches are read on a single 8-bit port. Therefore, once a port has been read, some decoding is required to determine which switches have been depressed.

Two spinner switches that are not wired in the controller are used in some games. To ensure that the spinner switch closures are processed as soon as they happen, they are connected to the CPU maskable interrupt, and the cartridge software determines which switch causes the interrupt.

Controller Connector Pin Out

Pin	Type		Commer	nt <u>s</u>		
	Indirect D0 input		Refer	to	Table	1
2	Indirect Do input				Table	
3	Indirect D3 input				Table	
4	Indirect D1 input			to	Table	1
5	Strobe signal output,	Common				
6	Indirect D6 input		Refer	to	Table	1
7	Indirect D5 input		Refer	to	Table	1
8	Strobe signal output,	Common	0			
9	Indirect INT input					

Strobe signal: typical 350 micro sec pulse width, -0.7V Low, +2.8V high typ.

For further information on the game controllers, refer to Chapter 2, Section 5.

2.2.8 Clock Generation

The system clock is a 3.58 MHz square wave generated by dividing the 7.1 MHz clock by two. The video chip clock (10.7 MHz) drives the Video Display Processor. The video chip clock is obtained from the third multiple, high Q tuned tank circuit on the 3.58 MHz system clock. The 7.1 MHz clock is generated by a crystal controlled oscillator. The output of the oscillator circuit is buffered and divided by two to provide a 50% duty cycle wave form.

2.2.9 Interconnects

The CPU Game Board and the Memory and I/O Board connect via two 30-pin ribbon cables and a dual 30-pin card edge connector, making a pin-for-pin connection between J1 on the Memory and I/O Board and J2 on the CPU Board. Refer to Subsection 2.1.9.

2.3 DATA PACK DRIVE MODULE

2.3.1 Theory of Operation

The data drive assembly provides for two drives: one is included with the system, the other is optional. The data drive is a computer-controlled, digital cassette drive.

The components of the data drive subsystem are located in two places: The Memory and I/O Board contains the tape drive 6801 microcomputer, a quad comparator and RAM. The Read/Write and Servo Boards are located in the data drive assembly.

The data drive 6801 controls the direction of the tape, tape speed, stop, track selection, and the Read/Write operation. In addition, the data drive 6801 monitors the presence of a data pack and transmits and receives data through AdamNet.

The comparator interfaces the data drive 6801 to AdamNet. The RAM circuitry consists of two 1024×4 ROM integrated circuits, connected in parallel to provide an 8-bit data bus.

Two printed circuit boards, the Servo Board and the Read/Write Board are located in the data drive assembly.

2.3.2 The Servo Board

The Servo Board controls the direction and speed of the data drive by:

Controlling the "take-up" motor which pulls tape in the direction of motion (forward or reverse).

Controlling the "supply" motor which applies a slight pull or drag in the direction opposite to tape motion. This function maintains a stable tape motion.

Maintaining a constant tape velocity across the head at any position, from the beginning to the end of the tape.

Providing two different tape speeds; 20 inches per second (slow), and 80 inches per second (fast). Tape speed is controlled by the data drive 6801.

Providing a brake function that allows the data drive 6801 to stop tape motion in milliseconds. (This function prevents the tape from coasting to a stop.)

Keeping the tape in tension when the tape is not in motion, preventing slack in the tape.

Providing a signal to the data drive 6801 indicating the status of tape motion.

Providing a signal to the data drive 6801 indicating whether or not a data pack has been properly placed in the data drive.

2.3.3 The Read/Write Board

The Read/Write Board records digital data encoded in bi-phase mark format on two separate tracks on the tape. This board also plays back the data recorded on the two tracks, with data output in the same format as recorded. The data drive 6801 selects the tracks.

The bi-phase mark technique embeds the clock in the data line. When data is returned from the data drive to the data drive 6801, the data line is coded back to the standard binary format.

A "cassette-in-place" switch located on the data drive chassis lets the Servo Board know when the data pack is in place and ready for use. An optical encoding wheel interacts with the Servo Board and the tape for drive speed control.

2.3.4 Data Pack Specifications

The magnetic tape in the data pack is standard two-track digital recording tape, 300 feet in length by .15 inches in width.

Effective data transfer rate

1.4K bytes per second

Tape speed
Normal
Fast forward/rewind

20 inches per second 80 inches per second

Tape capacity

256K bytes

Two tracks, 128 blocks per track
1 block = 1K

2.3.5 I/O Signals between Memory and I/O Board and Data Drive

Signal Name	Mem/I/O <u>Board</u>	R/W I/O	Description
(input) BRAKE*	J10-1	E26	Brakes tape motion. Logic 1 (active high) applies brake. This signal is passed from the Read/Write (RW) Board to the Servo Board at point E6.
(input) GO REV	J10-2	E25	Commands reverse direction of tape motion when at Logic 0 (active low). This signal is passed from R/W Board to Servo Board at point E8.
(input) GO FWD	J10 - 3	E27	Commands forward direction of tape motion when at Logic 0 (active low). This signal is passed from R/W Board to Servo Board at point E8.
(input) STOP	J10-4	E28	Prevents tape motion and latches data drive output to Logic 1 when at Logic 1 (active high). Enables data drive output and tape motion when at Logic 0. This signal is used in circuits on both boards. It is passed from R/W Board to Servo Board at point E9.
(input) SPEED SELECT	J10 - 5	E29	Selects speed of tape motion; Logic 0 = 20 ips (slow speed), Logic 1 = 80 ips (fast speed). This signal is passed from R/W Board to Servo Board at ElO.
GND	J10-6	E30	Return path for all logic and analog signals. Connected from R/W Board to Servo Board at point E19.

2.3.5 <u>I/O Signals between Memory/I/O Board and Data Drive</u> (continued)

Signal Name	Mem/I/O <u>Board</u>	R/W I/O	Description
(output) MSENSE	J10 - 7	E31	Provides sense of tape motion status for tape drive 6801 (active high). When Logic 1, tape is properly in motion. When Logic 0, tape is not moving due to stop/braking action or malfunction. This signal is passed between R/W Board and Servo Board at point E12.
(input) +12VI	J10 - 8	E32	+12V Inductive Power Supply line, used to power motor circuitry. Passed from R/W to Servo circuit at point E12.
(output) CIP	J10 - 9	E33	Indicates to tape drive 6801 that a data pack has been properly inserted in drive when Logic O (active low). Passed between R/W and Servo Boards at point E14.
(input) DATA IN	J11-1	E17	Data input to drive from tape drive 6801. Data is encoded in bi-phase mark format. Each bit cell is 70 micro-seconds in duration. A Logic 1 is denoted by a flux change in the bit cell. A Logic 0 is denoted by no flux change in the bit cell. This data is input to the drive in a serial stream.
(input) TRACK A/B	J11-2	E18	Selects recording track for read or write operation. Logic 1 selects Track A; Logic 0 selects Track B.
GND	J11-3	E19	Return path for all analog and logic signals.

2.3.5 I/O Signals between Memory/I/O Board and Data Drive (continued)

Signal Name	Mem/I/O <u>Board</u>	R/W I/O	Description
(input) +5V	J11-4	E20	+5V is passed to Servo Board at point E3.
(output) DATA OUT	J11 - 5	E21	Data output from drive to tape drive 6801. Data is encoded in bi-phase mark format as described in DATA IN signal. Jitter in signal is specified at 4% maximum, peak shift at 5% maximum.
(input) +12VL	J11-6	E22	+12V is passed from R/W to Servo Board at point E15.
(input) WRENABLE	J11-7	E23	Selects write mode (Logic 0) or read mode (Logic 1) of R/W circuit operation (active low).
	J11 - 8	E24	No connection.

2.4 <u>Differences of Expansion Module #3</u>

Expansion Module #3 is designed for the consumer who owns ColecoVision. It consists of the Memory Console, the keyboard, the printer, and various cords and cables to connect the components. The Memory Console attaches to the ColecoVision Console. The consumer provides his own TV. The major difference between Expansion Module #3 and the complete Adam Home Computer System is in the Memory Console. The equivalent of the CPU Board is housed in the ColecoVision Console, not in the Memory Console. Expansion Module #3 does not provide composite video output; therefore a monitor cannot be used.

Expansion Module #3 is not packaged with "joystick" game controllers or the antenna switch box, since these items come with ColecoVision.

The ColecoVision Board and the Memory and I/O Board connect via two 30-pin ribbon cables, a dual 30-pin card edge connect tor and the Interconnect Board, making a connection between J1 on the Memory and I/O Board and the expansion port of the ColecoVision console. Many of the connections are made pinfor-pin. The exceptions are:

A0 - A15

These lines are buffered. The input to the buffer is from the ColecoVision and the tristate control of the buffer (ADDRBUFEN) is from the Memory and I/O Board.

DO -D7

These lines are buffered bidirectionally. The $\overline{\text{RD}}$ signal from the ColecoVision controls the direction (when active, data flows toward the ColecoVision) and the $\overline{245\text{EN}}$ signal controls the tristate function.

IORQ

This line is connected directly between the two boards (pin $5\underline{5}$) and is also buffered (controlled by $\overline{\text{ADDRBUFEN}}$) and connected to pin 40 of the Memory and I/O Board.

₫'CLOCK

This line, pin 40 of the ColecoVision Board, is connected to pin 45 of the Memory and I/O Board.

♥ CLOCK

This line, pin 45 of the ColecoVision, is not connected.

M1, MREQ, RFSH, WR

These lines are buffered. The input to the buffer is from the ColecoVision, and the tristate control of the buffer (ADDRBUFEN) is from the Memory and I/O Board.

3. THE KEYBOARD

3.1 Theory Of Operation

The keyboard is the major input device through which the user communicates with the system. The game controller joystick, buttons and keypad can also be used to input information. The keyboard consists of two major subsystems. The external subsystem is an array of keys much like that of an mechanical typewriter. The internal subsystem, located on the Keyboard Printed Circuit Board, includes the keyboard 6801 microcomputer and the AdamNet serial interface.

The keyboard contains 75 full travel keys, including special function keys. Some special function keys are labelled on the key top, for example, STORE/GET, DELETE, BACKSPACE. The function keys on the top row of the keyboard are smart keys, marked I through VI. Corresponding smart key labels shown on the video display identify their functions.

The keyboard 6801 determines which keys the user presses through the keyboard matrix. Every 5 or 8 milliseconds, the keyboard 6801 scans the matrix and stores the characters in a buffer.

The matrix consists of vertical columns which correspond to keyboard 6801 output lines and horizontal rows which correspond to keyboard 6801 input lines.

A debounce function determines if any of the keys registers a low signal; then that row is read horizontally. More than one row in a column is read if more than one key in that column is depressed. The ASCII code for the depressed key or keys is read back to the 6801. The keyboard 6801 compares the code with the code input from the previous scan. If it is the same, the information is recorded; it is different, the information is not recorded.

The keyboard 6801 responds to the following commands from the master 6801:

Reset - the keyboard 6801 erases the character buffer and resets shift lock to the unlocked state.

Send character - the keyboard 6801 sends one character via the RxD/TxD line to the master 6801.

3.2 Interconnects

The lines linking the keyboard 6801 to AdamNet are:

Signal ground +5V (input) Reset (input) RxD/TxD (input/output)

4. THE PRINTER

4.1 Theory of Operation

The printer houses two printed circuit boards: the Printer Board and the Linear Power Supply Board. The Printer Board includes a 6801 microcomputer and parallel drivers that control the printer's electro-mechanical devices. The electro-mechanical devices include the daisy wheel motor, the carriage motor, the platen advance mechanism, the print solenoid, and the ribbon solenoid. The Linear Power Supply Board includes regulators, rectifiers, and a transformer. For more information on the power supply, refer to Chapter 2, Section 6.

4.2 The Printer Board

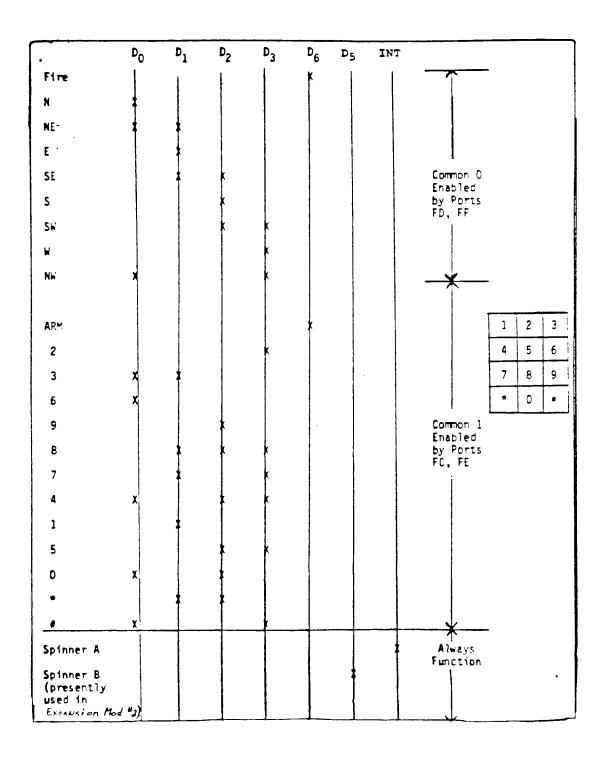
The printer 6801 communicates with the Master 6801 on the Memory and I/O Board via AdamNet to receive data to be printed, control the motions of the printer's mechanical parts, and ensure that the printer performs the optimum number of motions simultaneously.

Within the printer 6801 RAM is a 16-character buffer for data being sent to the printer over AdamNet. The buffer ensures that time is not lost between characters being printed, and maximizes printing speed.

The printer 6801 responds to some ASCII control codes including carriage return, line feed, backspace, escape, shift-out and shift-in. Shift-out causes the printer 6801 to reverse its left and right directions, allowing printing from right to left.

The printer 6801 controls the printer's electro-mechanical devices. It also ensures that lateral carriage motion, rotation of the daisy wheel and stepping of the platen can be activated simultaneously.

4.3 Interconnects


The lines linking the printer 6801 to AdamNet are:

Signal ground
+5V (input)
Reset (input)
RxD/TxD (input/output)

5. GAME CONTROLLERS

The game controller contains an 8-position joystick, two push buttons and a 12-key keypad. The information from a controller is read by the CPU on eight input lines through a single port. Once a port has been read, the input data must be decoded. See CONT_SCAN in the OS_7 Source Code Listing for details.

FIGURE 2-5: CONTROLLER CONFIGURATION

6. POWER SUPPLY

6.1 Power Supply Voltage

The power supply for the ADAM computer is located in the printer. The power supply converts the incoming line voltage (AC) to one 18V unregulated voltage that powers the ribbon solenoid and four low level, regulated DC voltages as follows:

+5v Main source of power to the CPU

-5V Supplies power to the CPU

+12VI Supplies power to drive the inductive loads such as carriage motor, daisy wheel motor, print solenoid, platen motor and digital data drive.

+12VL Supplies power to the system logic.

6.2 Excessive Current Output Protection

The power supply uses a variety of methods to protect against excessive current output.

The +5V and the +12VI are fused and use electronic fold-back current limiting.

The +12VL is not fused but uses electronic foldback limiting.

The -5v uses conventional current limiting and thermal protection which halts the current when the regulator gets too hot.

The 18V unregulated uses the same fuse as the +12VI.

A thermal fuse in the power transformer protects against overcurrent at the transformer.

The AC line input may vary from 108VAC to 132VAC. The power supply ensures a constant and quiet source of DC power.

6.3 Printer/Memory Console Interface Cable

The printer/console interface cable consists of 7 insulated wires and one uninsulated drain wire.

<u>Pin</u>	Color	Voltage/Description
1	Brown	+12L VDC +.508V
2	Red	6V +12I VDC +.497V
3	Orange	6V +5.075 VDC +.079V
4 5 6 7 8 9	Yellow Green Blue Violet	255V -5.15VDC +.25V Ground AdamNet Reset Drain No wire

6.4 Power Supply Output to CPU (via Printer/Memory Console Interface Cable)

<u>Voltage</u>	Full Load Current
1 E37	2 754
+5V	2.75A
-5V	0.2A
+12VI	0.6A
+12VL	0.3A

6.5 Power Supply Output to Printer

<u>Voltage</u>	Full Load Current
+5VL	0.25A
+12VI	1.95A
+18V (unreg)	1.0A

CHAPTER 3: SOFTWARE

1. INTRODUCTION

This chapter presents technical information on each of ADAM's software components. Emphasis is placed on AdamNet and the available operating systems. Descriptions of application software are provided as examples to software developers.

Source code listings for EOS and OS_7 can be requested with the form on the last page of this manual.

2. MEMORY MAP AND POWER UP/RESET PROCEDURE

Adam's Z80 microprocessor can address 64K bytes at any one time. The 64K addressable memory space is divided into two 32K sections. Each section may contain one of four memory options. Any one option for lower memory and any one option for upper memory can be selected for the full 64K memory space via port 7FH.

Memory Options for 0 - 7FFFH (lower memory)

32K INTRINSIC RAM 32K EXPANSION RAM OS 7 24K INTRINSIC RAM

Memory Options for 8000H - FFFFH (upper memory)

	l
32K	
RAM	l

32K EXPANSTON ROM

32K EXPANSION RAM 32K CARTRIDGE ROM

2.1 Lower Memory Options

SmartWRITER Word Processor ROM - This memory option consists of 32K of SmartWRITER ROM code. A small part of this code, EOS_BOOT, is responsible for system initialization during power up and reset. EOS ROM can also be accessed when this option is selected. See Subsection 4.1, EOS, for further details.

32K Intrinsic RAM - This option is the lower half of the 64K RAM included with every ADAM. DMA transfers to AdamNet can take place only in intrinsic RAM. SmartBASTC and most programs stored on data pack reside in this memory.

32K Expansion RAM - This option is the lower half of the 64K Memory Expander, an optional feature not included with the ADAM system. The 64K Memory Expander increases ADAM's memory to 144K of read/write memory (64K intrinsic, 64K expansion, 16K VRAM).

OS 7 and 24K Intrinsic RAM - This option contains OS_7 and 24K of ADAM's intrinsic RAM. OS_7 is the 8K ROM installed in ColecoVision and ADAM. In Expansion Module #3, this ROM is in the ColecoVision. The description of the 32K Intrinsic RAM also applies to this 24K intrinsic RAM.

2.2 Upper Memory Options

32K Intrinsic RAM - This option is the upper half of the 64K intrinsic RAM included with ADAM. DMA transfers to AdamNet can take place only intrinsic RAM. SmartBASIC and most programs stored on data pack reside in this memory.

Expansion ROM - This memory is provided by an expansion ROM, an optional feature not included in the ADAM system. The expansion ROM is installed in Connector #2 on the Memory and I/O Board. EOS BOOT checks this connector for valid data before initializing EOS. If valid data is found, the EOS BOOT code jumps to this ROM.

32K Expansion RAM - This is the upper half of the optional Expansion RAM described for lower memory.

32K Cartridge ROM - This memory option is the cartridge slot on ADAM or ColecoVision, used to execute game cartridges or other cartridge-based software.

2.3 Power Up/Computer Reset Procedure

When Adam powers up or when the computer reset switch is pressed, the MIOC selects SmartWRITER in lower memory and Intrinsic RAM in upper memory. EOS_BOOT executes this procedure:

Check for Expansion ROM. If Expansion ROM exists, jump to Expansion ROM.

Else, initialize EOS and jump to EOS_START

Check for the presence of devices in this order:

Disk Drive 1
Disk Drive 2
Data Pack Drive 1
Data Pack Drive 2

If a device exists, check for valid data in the device.

Boot and execute code from the first valid device found by loading block 0 to address OC800H then jumping to OC800H.

If no valid data is found on any device, execute SmartWRITER.

2.4 Z80 I/O Port Assignments

Port	Description
00H through 1DH 1EH 1FH	Reserved Optional Auto Dialer Reserved
20H through 3EH	Reserved
3FH*	Network reset; EOS enable
40H through 4EH	Reserved
4 FH	Expansion connector #2
50H through 5DH	Reserved
5EH	Optional Modem Data I/O
5FH	Optional Modem Control Status
60H through 7EH	Reserved
7 FH	Memory Map Control
80H through FFH	Reserved for ColecoVision use

^{*}Net reset - The net reset function is performed by setting bit 0 and then resetting bit 0.

*EOS enable - Setting bit 1 enables the EOS ROM. Resetting bit 1 disables EOS ROM. The EOS enable function only affects the SmartWRITER ROMs. To access the EOS ROM, the SmartWRITER ROMs must be selected.

For further details on port assignments, see PORT_COLLECTION in the EOS Source Code Listing.

2.5 Memory Map Control

Software can select the memory configuration by writing to Port 7FH. Data bits DO and DI select the lower (0 - 7FFFH) memory option. D2 and D3 select the upper (8000H - FFFFH) memory option. D4 through D7 are reserved for future expansion, and should remain as 0. The value to be written to Port 7FH is obtained from the following tables.

Lower Memory Option Selection

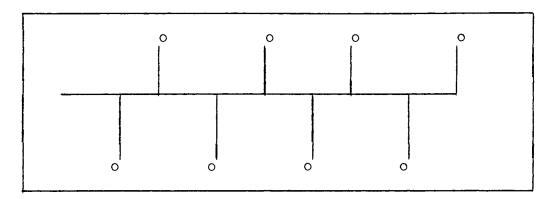
- 0 1 32K Intrinsic RAM
- 1 0 32K Expansion RAM
- 1 0S7 + 24K Intrinsic RAM

Upper Memory Option Selection

- 0 0 32K Intrinsic RAM
- 0 1 Expansion ROM
- 1 0 Expansion RAM
- 1 1 Cartridge ROM

2.6 Reset Procedures

Adam can be reset in either computer mode or in game mode. When the computer reset switch is pressed, Adam resets to computer mode, according to the power up procedure described in Subsection 2.3.


When the cartridge (or ColecoVision) reset switch is pressed, Adam resets to game mode. 32K of Cartridge ROM are switched into upper memory. OS-7 plus 24K of intrinsic RAM are switched into the lower bank of memory. Refer to Subsection 9.1 for the game mode memory map.

3. ADAMNET

3.1 Introduction

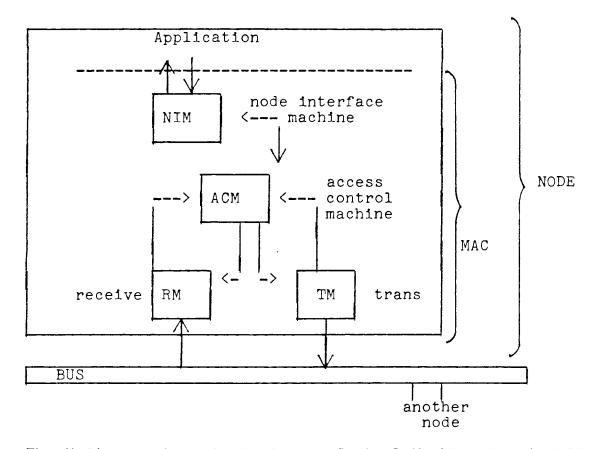
AdamNet is based physically on a shared bus, single master topology, although logically it resembles a token-passing network. The physical design of the network is depicted in Figure 3-1.

FIGURE 3-1: BUS NETWORK

The circles represent nodes (for example, printers or keyboards), which connect to a shared bus, represented by the horizontal line. The network is a four wire bus. The wire definitions are:

Data
Reset
Signal ground
Power

The network resides in all Adam components. The reset line behaves as a master reset signal to every node attached to the network. A transition on this line causes all attached devices to enter the power-on state, allowing the master to bring sanity to the network during periods of erratic behavior.


Logical Design

Logically, AdamNet resembles a token-passing network. In a token-passing network, the right to talk on the bus is passed from node to node. This right, or "token", allows the node to access the bus and send messages. One node functions as the master of the bus. The master gives the token to other nodes with a regulated frequency.

3.2 Network Master Concept

Conceptually the master is like any other node on the network. Each node contains an IEEE defined Medium Access Control (MAC) layer of software that enables the node to gain access to the network. The MACs in non-master nodes contain a subset of the functions in the master's MAC. Internally all MACs are composed of four loosely coupled logical machines: Node Interface Machine (NIM), Access Control Machine (ACM), Receive Machine (RM) and Transmit Machine (TM).

FIGURE 3-2: MAC Internals

The MAC's version of the Access Control Machine is significantly different from that of the non-master nodes. The NIM, RM and TM components in the master and non-master nodes are basically equivalent. The RM and TM are physical level I/O routines that accept and send data frames.

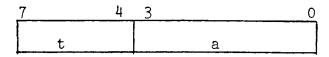
3.3 Message Philosophy and Definition

AdamNet messages can be divided into two types: commands and responses. Each type can be subdivided into either data or

control sub-types. Commands are messages initiated by the master, while responses are initiated by non-master nodes. The following four possibilities exist:

- command.control
- command.data
- response.control
- response.data

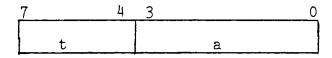
The format of a basic message follows:


7	5 _	 3	0
		- · - ·	
1	S	 	a

Where: a = device address

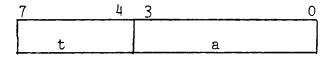
s = subtype (indicates the nature of the message)

The messages are defined in the following pages.


3.3a. COMMAND.CONTROL (RESET)

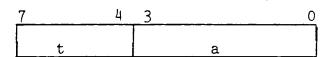
a = target address (1..15)

t = RESET(0)


3.3b. COMMAND.CONTROL (STATUS)

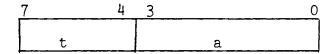
a = target address (1..15)

t = STATUS (1)


3.3c. COMMAND.CONTROL (ACK)

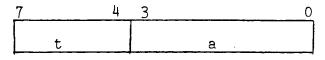
a = target address (1..15)

t = ACK(2)


3.3d. COMMAND.CONTROL (CLR)

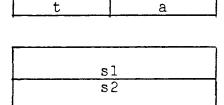
a = target address (1..15)

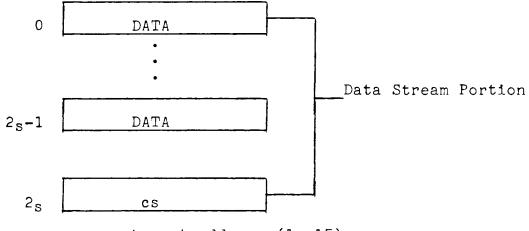
t = CLEAR (3)


3.3e. COMMAND.CONTROL (RECEIVE)

a = target address (1..15)

t = RECEIVE (4)

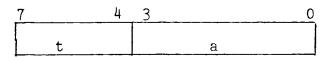

3.3f. COMMAND.CONTROL (CANCEL)



a = target address (1..15)

t = CANCEL (5)

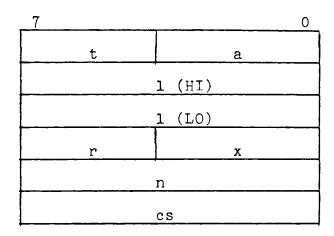
3.3g. COMMAND.DATA (SEND)


a = target address (1..15)

t = SEND (6)

s1,2 = MAX message size.

DATA = data byte
cs = check sum


3.3h. COMMAND.CONTROL (NACK)

a = target address (1..15)

t = NACK (7)

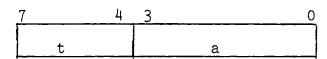
3.31. RESPONSE.CONTROL (STATUS)

a = source address (1..15)

t = STATUS(8)

x = transmit code: 0 - character mode (0-255)

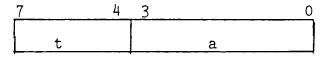
1 - block mode


r = reserved

n = device deependent status

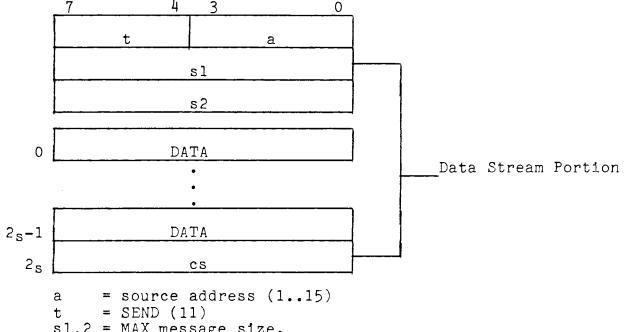
1 = MAX message size

cs = check sum of bytes 1 - 4


3.3j. RESPONSE.CONTROL (ACK)

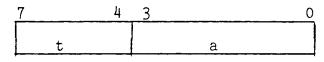
a = source address (1..15)

t = ACK (9)


3.3k. RESPONSE.CONTROL (CANCEL)

a = source address (1..15)

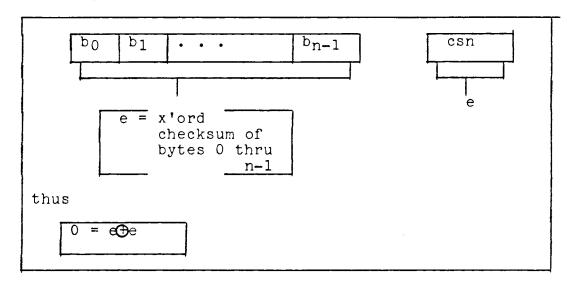
t = CANCEL (10)


3.31. RESPONSE.DATA (SEND)

s1,2 = MAX message size.

DATA = data byte cs = check sum

3.3m. RESPONSE.CONTROL (NACK)


a = source address (1..15)

t = NACK (12)

3.4 Error Control

Data messages use an exclusive-or checksum to verify the integrity of the data. More specifically, for a n-1 byte data stream, an nth byte is added which is equal to the exclusive or'd checksum of the zero'th through the n-1 byte of the data stream. This insures that the checksum (exclusive or'd) of the zero'th through the nth byte equals zero.

FIGURE 3-3: ERROR CONTROL

A retry method is implemented by the Master to determine whether the lack of a response from a node is due to either a busy or failure condition.

3.5 Class of Service Concept

Each node is assigned a class of service. Class of service is defined as:

maximum message length
node type

To accept a device onto the network the CPU queries the device with a "COMMAND.CONTROL (STATUS)." In turn, the target device responds with a "RESPONSE.CONTROL (STATUS)" which entails the delivery to the host of a multi-byte package. This package defines to the host the nature and attributes of the responding device.

3.6 Power Up/Initialization

The CPU asks each attached device for its class of service message at power up. The CPU is responsible for associating

a logical unit address to each physical port on the bus. See EOS for device assignments.

3.7 Link Speed

The baud rate is 62.5k. This translates to a bit cell time of 16us. Thus, the time to transmit one byte (including a start and stop bit) is 160us.

3.8 <u>Master Node Interface</u>

DOD OND OBAM

AdamNet communicates with the Z80 through a message passing system. The Z80 RAM contains a group of data structures called DCBs (Device Communication Blocks). Every device on AdamNet is associated with a DCB. The structure of a DCB follows:

DCB CMD STAT	EQU	0
DCB BA LO	EQU	1
DCB BA HI	EQU	2
DCB BUF LEN LO	EQU	3
DCB BUF LEN HI	EQU	3 4 5
DCB SEC NUM 0	EQU	5
DCB_SEC_NUM_1	EQU	6
DCB_SEC_NUM_2	EQU	7
DCB_SEC_NUM_3	EQU	7 8 9
DCB_DEV_NUM	EQU	
*reserved	EQU	10
*reserved	EQU	11
*reserved	EQU	12
*reserved	EQU	13
DCB_RETRY_LO	EQU	14
DCB_RETRY_HI	EQU	15
DCB_ADD_CODE	EQU	16
DCB_MAXL_LO	EQU	17
DCB_MAXL_HI	EQU	18
DCB_DEV_TYPE	EQU	19
DCB_NODE_TYPE	EQU	20

DOLL

A DMA mechanism allows the 6801 master to scan the DCBs for pending work. The 6801 master writes completion messages and data to the DCBs or data areas as indicated in DCB messages. The Z80 either deposits commands into the DCBs, or inspects the DCBs for the completion status of previously issued commands.

A single data structure (PCB) allows the Z80 to communicate with the 6801 master.

3.9 Functional Overview - Z80 and 6801 Master

The following table provides a functional overview of the 280 and 6801 master. The three pages following the table provide further details.

Layer	Responsibilities
Z8 0	Administer PCB, DCB, and data blocks Signal 6801 Master App Scheduling and prioritizing
6801_Master_App	Scan DCBs (Events from Z80) Post I/O to 6801Mac Send control signals Collect signals Interpret PCB and DCBs
6801_Master_Mac	Control network Write/read data to/from Z80. MEM based on NIM_BLK

Z8 0

Inputs

- Processor_Control_Block (to function #3)
- Device Control Block (to function #3) 2.
- 3. Memory Blocks (to function #1)

Functions

- To manage data for PCB, DCBs and Memory Blocks. 1.
- To send signals to the 6801 MASTER APP. 2.
 - a. Processor Commands
 - b. Device Commands
- To receive signals from the 6801 MASTER APP. 3.
 - a. Process Statusb. Device Status
- 4. To administer the priority of scheduling devices by regulating the frequency within which the Z80_MASTER posts commands to the applicable DEVICE CONTROL BLOCK COMMAND.

Outputs

- PCB (from functions #4, 2)
- DCB (from functions #4, 2)
- MEM BLOCKS (from function #4)

Z80 MASTER must allocate the MAX message length buffer Note: for the sending/receiving node's message.

6801 Master App

Inputs

- 1. PCB (to functions #2, 3)
- 2. DCBs (to function #1, 3)
- 3. NIM BLKS (to function #4)

Functions

- To scan the DCBs for changes of state to the DCB(i). DEVICE COMMAND field.
- 2. To scan the PCB.
- 3. To interpret the scanned information.
- 4. To receive I/O completion signals from the MAC. (Deposited in M SIG).
- 5. To post I/O requests to the 6801 MASTER MAC.
- 6. To post processor status information to the Z80 MASTER.
- 7. To post DEVICE_STATUS information to the Z80_MASTER.

Outputs

- 1. PCB (from function #6)
- 2. DCB (from function #7)
- 3. NIM BLK (from function #4)

6801 Master Mac

Inputs

- 1. NET_IN MESSAGES (to functions #1, 3)
- 2. NIM BLK (to functions #1, 2, 5)

Functions

- 1. To sequence the I/O of the network.
- 2. To send messages to devices.
- 3. To receive messages from devices.
- 4. To signal status information to the 6801 MASTER APP.
- 5. To execute 6801_MASTER_APP signals.

Outputs

- 1. NET OUT MESSAGES (to functions #1, 2)
- 2. NIM_BLK (to functions #1, 4)

4. OPERATING SYSTEM

4.1 EOS (Elementary Operating System)

This section provides information to allow designers to write programs that operate in an Adam/EOS environment. It describes the organization of the Elementary Operating System (EOS) including file management and executive calls.

The Elementary Operating System is a collection of service routines that provide input/output facilities to peripheral devices. Programs accessing these devices need not be concerned with the physical characteristics of the devices, because EOS logically resides between the physical devices and application programs. EOS shields application programs from the details of AdamNet.

Entries to EOS are defined in Subsection 4.1.7. Application programs should use only these entry points. Access to EOS in any other manner is dangerous and may cause program malfunction. EOS error codes are listed in Subsection 4.1.8.

FIGURE 3-4: EOS MEMORY MAP

	D390H
FILE CONTROL BLOCK HEADERS	D400H
FCB BUFFERS (3X1KB)	EOOOH
EOS CODE	
	F400H
ADAMNET DEVICE DRIVERS	FBFFH
EOS DATA TABLES	FC30H
EOS JUMP TABLES	FD50H
GLOBAL RAM AREA	FECOH
PROCESSOR CONTROL BLOCK	FEC4H
DEVICE CONTROL BLOCK	FFFFH
DMA RESERVED BYTE	

4.1.1 EOS Overwrite Addresses

Some applications may not require all of the routines provided by EOS. To accommodate this situation, EOS has three defined starting locations. Applications should always access the routines from the defined jump table locations.

Location OD390H is the lowest EOS starting address. File manager software is located in this part of EOS. If the application program uses file manager software, the application should not overwrite OD390H or above.

Location OEOOOH. If the application does not use the file manger software, it can overwrite EOS up to ODFFFH. Routines that access the lower level network device drivers, and the device drivers for the VDP, controllers and sound generator are available.

Locations OF400H to OFC30H contain the lowest level device drivers for AdamNet. The application can extend up to OF3FFH if it is using OS_7 or its own drivers for the VDP, controllers and sound generator.

4.1.2 EOS Files

The file structure takes advantage of the sequential design of the data pack. (For more information on tapes and tape formats, see Chapter 3, Section 5.) A file directory keeps track of the location of files on tape, and other pertinent information such as size, creation date, and protection attributes. Some programs, such as super games, do not require directories.

Data is stored on tape in blocks of 1K (1024 bytes). An EOS file occupies a number of contiguous blocks, allocated upon file creation. EOS files can be any number of blocks but; are limited by the physical storage space available.

Block 0 is reserved for a cold start loader. Block 1 and up, depending on the directory size, contain the directory.

The EOS file manager accesses and controls a file through a File Control Block (FCB) maintained in RAM. The FCB contains static and dynamic information about the file. The FCB is created when a file is opened and destroyed when the file is closed. Application programs are limited to two FCBs at any one time. Each FCB is 36 bytes long. A data buffer, 1024 bytes long, is associated with each FCB.

The Directory

The directory contains two types of records: Volume and File Records. The first 26 bytes of the first block in the directory is the Volume Record. The Volume Record is followed by a number of File Records, also 26 bytes in length. The 13th byte of the Volume Record determines the size of the directory. Up to 127 blocks may be allocated for the directory, allowing a maximum of 4953 file entries, and 39 directory entries per 1K block.

Size	(bytes)	(12)	(1)	(4)	(4)	(2)	(3)
	VOL	_NAME	DIRECTORY	DIR_CHECK	VOL_SIZE	reserved	CREATION
	<u> </u>		SIZE	<u> </u>	<u> </u>		DATE
Volume Record							
Size	(bytes)	(12)	(1)	(4) (2)	(2)	(2)	(3)

Size	(bytes)	(12)	(1)	(4)	(2)	(2)	(2)	(3)
	DIR	NAME	DIR	DIR START		DIR USED	DIR_LAST	CREATION
	<u> </u>	- '	ATTRIB	BLOCK	LENGTH	LENGTH	COUNT	DATE
						-		

File Record

Name	Length	Explanation
VOL_NAME	12 bytes	Logical Volume Name
DIRECTORY SIZE VOL_ATTR VOL_DIRSIZE	1 byte Bit 7 Bits 6-0	Delete protection if set to 1 Directory size in blocks
DTR_CHECK	4 bytes	A unique code that indicates the presence of a directory.
VOL_SIZE	4 bytes	Total number of blocks allocated
CREATION DATE	3 bytes	(1) (1) (1) VOL_YEAR VOL_MONTH VOL_DAY
DIR_NAME	12 bytes	file name. 12th byte denotes file type (A, a, H or h). Terminated by ETX (03H). (See 4.1.3)

DIR ATTRIB

1 byte File attribute byte

Bits:

7	6	_ 5	4	3	2	1	0
р	W	r	u	s	a	е	f

p: permanently protected bit
w: write protected
r: read protected

u: user file

s: system file
a: file has been deleted

e: execute protect

(0 = execute)

(1 = no execute)

f: not a file

A typical user-defined file would have a DIR-ATTTRIB of 10H. An executable file, which is loaded and run from 100H, has a DIR ATTRIB of OC8H.

DIR_START_BLOCK	4 bytes	Starting block number of the file
DIR_MAX_LENGTH	2 bytes	File size in blocks
DIR_USED_LENGTH	2 bytes	Number of blocks used, including any partially used blocks
DIR_LAST_COUNT	2 bytes	Number of bytes in the last block. $(0 - 400)$
CREATION DATE	3 bytes	DIR_YR DIR_MNTH DIR_DAY

File Control Block (FCB) Organization

# bytes	
12	FCB_NAME
1	FCB ATTR
4	FCB_START_BLOCK
2	FCB_MAX_LENGTH
2	FCB_USED_LENGTH
2	FCB_LAST_COUNT
1 1	FCB DEVICE FCB MODE
4	FCB_BLOCK
4	FCB _LAST_BLOCK
2	FCB_POINTER
1	FCB LENGTH
1024	FCB_BUFFER
•	

Up to eleven characters, free format Same as attribute byte of File Record File starting block number on tape Total number of blocks allocated Number of blocks used within the file Number of bytes in last block of the file Device containing the file. See below. File open modes. See below. Block number currently in FCB BUFFER Last block number of the file FCB BUFFER pointer Data block size of the current FCB_DEVICE 1K buffer allocated for each file currently opened. Matches the block size on the digital data pack. Controlled by the EOS file manager to

FCB_DEVICE

A unique number assigned to all devices (present and future):

transfer data between the user program

00H - Master

and mass storage devices.

01H - Keyboard

02H - Printer

03H - Reserved

04H - Floppy Disk Drive - 1

05H - Floppy Disk Drive - 2

06H - Reserved

07H - Reserved

08H - Data Pack Drive - 1

18H - Data Pack Drive - 2

09H - Reserved

OAH - Reserved

OBH - Reserved

OCH - Reserved

ODH - Parallel Interface Module

OEH - RS-232C Interface Module
OFH - Gateway

4.1.3 File Types and Headers

The 12th character of DIR_NAME indicates the file type. Valid file types are A, a, h or H. The lower case file types indicate backup versions of a file. These files have the user file attribute bit set. The first three bytes of an "H" file define the length of the header and the application code. Following these bytes are the header and then ASCII information. Refer to Subsection 6.2 for an example of an "H" file.

The application code defines the format of the header. The following application codes have been assigned:

- 1 SmartWRITER
- 2 SmartBASIC
- 16 Electronic FlashCard Maker

"A" files have the user bit set, but do not contain headers. ASCII information begins in the first byte of the file.

4.1.4 EOS Executive Calls

This subsection summarizes EOS executive subroutines that can be called from application programs. The executive calls fall into three categories: system operations, simple device I/O and mass storage file I/O.

System Operations

_EOS_START	Starts EOS by going through initialization steps
_HARD_INIT _SOFT_INIT _HARD_RESET_NET _SYNC	Initializes the system at powerup Initializes the system anytime but powerup Applies hardware reset (38H) to AdamNet Synchronizes Z8O with Master 6801
_SCAN_ACTIVE	Scans devices on AdamNet and establishes the Device Control Blocks (DCB)
_RELOC_PCB	Relocates PCB and DCBs to different addresses after powerup if necessary
FIND DCB GET_DCB_ADDR GET_PCB_ADDR REQUEST_STATUS	Finds the DCB address for the assigned device Same as _FIND_DCB Finds the current PCB address of the system Issues a status request command to a device

Simple Device Operations

CONS_INIT _CONS_OUT	Initializes the system console Displays a character or performs screen control on the system console
_REQ_KBD_STAT _REQ_PR_STAT	Requests keyboard status Requests printer status
RD CH DEV RD KBD	Indicates a read command to a character device Reads a character from the keyboard
_START_RD_CH_DEV	Sets up a character device DCB to issue read command (concurrent operation)
_END_RD_CH_DEV	Checks the status of character device DCB after command has been sent to read (concurrent)
START RD KBD	Starts a keyboard read command (concurrent)
$\overline{}$ END R $\overline{\overline{D}}$ K $\overline{\overline{B}}$ D	Checks the keyboard status (concurrent)
_wr_ch_dev	Initiates a write command to a character device
PR CH	Prints a character on the printer
_PR_BUFF	Prints string of ASCII characters terminated by ETX (03)
_START_WR_CH_DEV	Sets up a character device DCB to issue write command (concurrent)
_END_WR_CH_DEV	Checks the status of character device DCB after command has been sent to write (concurrent)
START PR CH	Starts a printer print command (concurrent)
$\overline{}$ END P $\overline{\overline{R}}$ C $\overline{\overline{H}}$	Checks the printer status (concurrent)
_START_PR_BUFF	Starts the command of printing a string of characters (concurrent)
_END_PR_BUFF	Checks the printer status (concurrent)

Mass Storage Device Operations

File Manager Section

_SET_DATE _GET_DATE	Sets the current date
QUERY FILE	Gets the current date
	Reads directory entry of a file
_SET_FILE	Sets the file directory entry
MAKE_FILE	Creates a file in the directory
OPEN_FILE	Opens a file by setting up the FCB
CLOSE_FILE	Closes a file by marking the FCB
_RESET_FILE	Resets the file by pointing back to the first byte
READ FILE	Reads data from a file into user's buffer
WRITE FILE	Writes data to a file
FMGR INIT	Initializes the file manager
SCAN FOR FILE	Scans the directory block(s) for a file

Device Driver Section

RD 1 BLOCK	Reads a block of data (1024 bytes) from mass
	storage device
_WR_1_BLOCK	Writes a block of data to mass storage device. I/O buffers containing data to be trans-
	ferred to tape can reside anywhere in Z80 RAM.
REQ TAPE STAT	Requests status of the data pack drive
_START_RD_1_BLOCK	Sends read command to read a block of data from a block device (concurrent)
END RD 1 BLOCK	Checks status after START RD 1_BLOCK
_START_WR_1_BLOCK	Sends write command to write a block of data to a block device (concurrent)
END WR 1 BLOCK	Checks status after END WR 1 BLOCK

4.1.5 EOS Routines Adapted from OS 7

A section of EOS contains device drivers for the video processor, sound generator and controllers. Many of these routines are functionally the same as routines in the OS_7 ROM. The inputs and outputs for the EOS version of these routines is not necessarily the same as those for equivalent routines in OS_7. Entry points are defined in Subsection 4.1.7. The file A_uOS_00 in the EOS Source Code specifies parameter passing.

Routines for the Video Processor

WRITE_VRAM READ_VRAM
WRITE_REGISTER READ_REGISTER
FILL_VRAM INIT_TABLE
PUT_VRAM GET_VRAM
CALC_OFFSET PX_TO_PTRN_POS
LOAD_ASCII PUT_ASCII

WR SPR ATTRIBUTE

Routines for the Controllers

DECODER SPINNER POLLER

Routines for the Sound Processor

DECLSN DECMSN
MSNTOLSN ADD8 T016
SOUND INIT TURN OFF

SOUND_INIT TURN_OFF_SOUND PLAY_IT SOUNDS

EFFECT_OVER

Adam Routines for OS_7 Access

SWITCH_MEM PORT_COLLECTION

4.1.6 <u>Initializing EOS</u>

No initialization of EOS is necessary if an application program boots from disk or data pack. If a program boots from the cartridge slot or a connector, EOS must be loaded from ROM to its executable location, according to the following procedure. This procedure must be executed from address range 8000H through ODFFFH in intrinsic RAM.

Step 1: Select the SmartWRITER option in lower memory.

out 7FH.00H

Step 2: Strobe the EOS_ENABLE line by writing the value 02H to port 3FH.

out 3FH.02H

Step 3 Copy EOS from location 6000H to location 0E000H. Do not overwrite the DCBs.

LD HL,6000H LD DE,0E000H LD BC,0FECOH - 0E000H LDIR

Step 4: Deselect EOS ROM. EOS ROM should be deselected if the SmartWRITER ROMS will be accessed by the application program. LOAD ASCII is an example of an EOS routine which accesses the EOS ROM.

out 3FH,0

Step 5: Initialize EOS tables. All RAM should be cleared to 0. See Subsection 4.1.7 for the equate values.

LD BC, CLEAR RAM SIZE
LD DE, CLEAR RAM START+1
LD HL, CLEAR RAM START
XDR A
LD [HL], A
LDIR

Step 6: Initialize I/O ports. EOS collects port values from the OS 7 ROM. EOS routines use these ports when they access the video processor, controllers and sound generator.

CALL PORT_COLLECTION

Step 7: Initialize AdamNet. HARD INIT performs the 6801/Z80 synchronization, performs a roll call poll on the network, and establishes the DCBs.

CALL _HARD_INIT

4.1.7 EOS Entry Points

ADD816	EQU	OFD4DH	: P	MEM_CNFGOF	€QU	0FC26H	; A
BLK_STRT_PTR	EQU	OFDDCM	:0	MEM_SWITCH_PORT	EQU	0FC27H	; A
BLOCKS_REQ	EQU	OFEOCH	:D	MOD_FILE_COUNT		OFDD5H	
BUF_END	-	OFEDAH		MSNTOLSN		OF D4AH	
BUF_START		OFEOBM		NET_RESET_PORT	EQU	0FC28H	; A
		0FE02H		NEW_HOLE_SIZE		OFE1AH	; D
BYTES_TO_GO	EQU	OFEO4H OFD32H	; D	NEW_HOLE_START	EQU	OFE16H	: D
				NUM_COLUMNS	EQU	OFEAOH	: D
CLEAR_RAM_SIZE				NUM_LINES	EQU	OFESFH	; D
CLEAR_RAM_START				JEDCHAR_	EQU	OFEAOH OFEAFH OFE79H OFD6AH	: D
COLORTABLE		OFD6CH		PATTRNGENTBL Pattrnnametbl	EQU	OFD6AH	: 0
CONTROLLER_O_PO				PATIKNNAMETEL			
CONTROLLER_1_PD				PCB		OFECOH	
CURRENT_DEV	EQU	OF D6FH	: 0	PERSONAL_DEBOUN			
CURRENT_PCB	EQU	OFD70H OFEA5H OFD6EH	• 0	PLAY_IT		0FD56H	
CURSOR	EQU	UFEASH	10	POLLER		OFD3EH	
CUR_BANK	500	OFDOER	• 0	PORT_COLLECTION			
_		OFD88H		PORT_TABLE	EQU	0FC27H	i A
DECLIN		0FD44H 0FD47H		PRINT_BUFFER PTRN_NAME_TBL	EQU	055434	• 0
DECMSN DEEAULT BY DEV				FINA_MARE_IDE	500	OFEASH	
DEFAULT_BT_DEV .				PTR_TO_LST_DF_S	500	OFEBER	: 0
DEVICE_ID DIR_BLOCK_NO	500	050004	• 0	PTD TD C CN 1	500	OFE70H	10
EFFECT_DVER	5011	05050	• 0	PTR_TO_S_ON_O PTR_TO_S_ON_1 PTR_TO_S_ON_2 PTR_TO_S_ON_3 PUT_ASCII PUT_VRAM	E Q U	0FE72H	: 0
EDS_DAY	ECH	OFD5CH OFDE2H	• D	PTP TD C DN 3	E 0.1	0FE74H	• 0
EDS_MONTH	EOU	OFDEZH	• D	PHT ASCTT	500	050174	
EDS_STACK	EOU	OFDE1H OFE58H	-0	PHT VPAM	EOU	OFD2CH	• •
EDS YEAR	E011	DEDECH	: D	PX_TO_PTRN_POS	EOU	0FD35H	• • •
₽CB BUFFFR	FOU	DEDBAH	:0	QUERY_BUFFER	FOLL	0.0334	• •
FCB DATA ADDR	FOU	DEDEEH	: D	READ_REGISTER	ESU	0F023H	• 0
FCB HEAD ADDR	FQU	OFDEDH	: 0	READ_VRAM	FOU	0.0231	• P
EDS_YEAR PCB_BUFFER FCB_DATA_ADDR FCB_MEAD_ADDR FILENAME_CMPS FILE COUNT	EGU	OFDDBH	a D	RETRY_COUNT	FOU	BEDDAH	
FILE_COUNT	EDU	OFDD4H	: D	REV NUM	FOU	DEDADH	• 0
FILE_NAME_ADDR				SAVE_CTRL	ECU	0FE78H	: 0
FILE_NUMBR		OFOD7H		SECTORS_TO_INIT	EQU	0F086H	: 5
FILL_VRAM		OFD26H		SECTOR_NO	EQU	0FD87H	. D
FMGR_DIR_ENT	EQU	OFDE3H	; D			OFC2FH	
FNUM	EQU	OFE01H	; D			0F059H	
FOUND_AVAIL_ENT	EQU	OFDDBH	; D	SDUAD INIT	FOU	DEDEDM	• 0
GET_VRAM	έQU	OFD2FH	; P	CPIN CUN CT	ECH	DEECOM	• •
INIT_TABLE	EQU	OFD29H OFBFFH OFD75H	; P	SPIN_SW1_CT SPRITEATTRTBL	EÇU	0FE59H	;D
INT_VCTR_TBL	EQU	OFBFFH	: A	SPRITEATTRTBL	ΕQJ	0FD64H	; 0
				SPRITEGENTAL Start_block	EQU	0FD66H	: D
LINEBUFFER_	EQU	OFE7EH	: 0	START_BLOCK	EQ∪	0FE12H	; D
LDAD_ASCII	EQU	0FD38H	; >	STROBE_RESET_PD	EQU	OFC2EH	; A
MEM_CNFG00	EQU	OFC17H OFC18H	; A	STROBE_KESEI_PO STROBE_SET_PORT SWITCH MEM	EQU	OFCZDH	; A
MEM_CNFG01	EQU	OFC18H	; A	0-210-1211	- 40	01 21411	
		OFC19H		SWITCH_TABLE	EQU	OFC17H	; A
MEM_CNFG03		OFC1AH		TEMP_STACK		OF£6EH	
MEM_CNFG04		OFC1BH				0FD53H	
MEM_CNFG05		OFC1CH		UPDATE_SPINNER		OFD41H	
MEM_CNFG06		OFC1DH		UPPER_LEFT		OFEA1H	
MEM_CNEGOT		OFC1EH		USER_BUF		OFEO6H	
MEM_CNFG08		OFC1FH				0FE10H	
MEM_CNEGOS		0FC20H				OFC29H	
MEM_CNEGOR			-	VDP_DATA_PURI		OF CZAH	
MEM_CNFGOB MEM_CNFGOC		0FC22H 0FC23H		VOP_STATUS_BYTE	ENU	0F061H	. 0
MEM_CNFGOD		0FC24H				0 F B F F H	
MEM_CNFGOE		0FC25H		-		OFCO2H	
	-40	J. CZJN	• ^			0FC02H	
						0FC08H	
						OFCOBH	

4.1.7 EOS Entry Points

VECTOR_30H	EQU	OFCOEH	: A
VECTOR_38H	EQU	OFC11H	; A
VECTOR_66H	EQU		
_			
ADF BFK ZI	EDU		
VRAM_ADDR_TABLE	EQU	0F064H	; D
WRITE_REGISTER	EQU	OF D20H	; P
WRITE_VRAM	EQU	OF DIAM	
WR_SPR_ATTRIBUT	EQU		
X_MAX	EQU	OFE78H	: D
X_MIN	EQU	OFE7AH	: 0
Y_MAX	-	OFE7DH	
_			
Y_MIN		OFE7CH	
_CHECK_FCB	EQU	DFCFOH	; P
_CLOSE_FILE	EQU	OFCC3H	; P
_CONS_DISP	EQU		
_0043_0137			
_CONS_INIT	₽ÇU		
_cons_out	EQU	0FC39H	; P
C V A	EQU	OFDOEH	; P
_DELETE_FILE	EQU		-
_UELETE_FILE			-
_DLY_AFT_HRO_RE	EQ∪	OFC3CH	
_END_PR_BUFF	EQU	OFC3FH	; P
_END_PR_CH	EQU	OFC42H	; P
END BD 1 BLOCK		0FC45H	
_END_RD_1_BLOCK			
_END_RD_CH_DEV	EQU	0FC48H	
_END_RD_KBD	EQU	OFC4BH	; P
_END_WR_1_BLOCK	EQU	OFC4EH	; P
END UD CH DEN			
_END_WR_CH_DEV	EQU		
_E0S_1	ΕQU		
_E3\$_2	EQU	OFDOSH	; P
_E0S_3	EQU	OFDOBH	; P
_EDS_START	EÇU		
_FILE_QUERY	EQU		
_FIND_DCB	ΕQU	0FC54H	; P
_FMGR_INIT _GET_DATE	EQU	OFCBAH	P
GET DATE	έQυ		-
GET_DCB_ADDR GET_PCB_ADDR	EQU		; P
_GET_PCB_ADDR	EQU	OFC5AH	; P
_GCTD_WP	EQU	DFCE7H	; P
_HARD_INIT	EQU	OFC5DH	; P
MADD DESET NET			
_HARD_RESET_NET	EQU		
_INIT_TAPE_DIR	ۂU	OFCBDH	; P
_MAKE_FILE	EQJ	OFCC9H	; P
_MDDE_CHECK	EQU	OFCF9H	; P
_OPEN_FILE	EQU		
			-
_POSIT_FILE	EQU		-
_PR_BUFF	EÇU	0FC63H	
_PR_CH		OFC66H	
_QUERY_FILE	EQU		
			-
_RD_1_BLDCK		0FC69H	; P
_RD_DEV_DEP_STA	EĢU	OFCE4H	; P
_RD_KBD	EQU	OFC6CH	; P
_RD_KBD_RET_COD	EQU	OFC6FH	; P
_RD_PR_RET_CODE	EQU	OFC72H	; P
_RD_RET_CODE	EQU	0FC75H	; P
_RD_TAPE_RET_CO	£₽U	OFC78H	; P
_READ_BLOCK	EQU	OFCF3H	P
_READ_EDS	EQU	OFCEAH	; ?
_READ_FILE	EQU	DFCD2H	: P
_RELDC_PCB	EÇU	OFC7BH	; P
_RENAME_FILE	EQU	DFCDEH	; P
_REQUEST_STATUS	EQU	OFC7EH	; >
_REQ_KBD_STAT	EQU		; P
_REQ_PR_STAT	EQU	OFC84M	; P

REQ_TAPE_STAT EQU OFC87H :P
RESET_FILE EQU OFCC6H :P
SCAN_ACTIVE EQU OFCBAH :P
SCAN_FILE EQU OFCFCH :P EQU OFCDBH :P _SET_DATE _SET_FILE EQU OFCCFH :P _SDFT_INIT EQU OFC8DH :P _SDFT_RES_DEV EQU OFC90H :P _SDFT_RES_KBD EQU OFC93H :P _SOFT_RES_PR EQU OFC96H :P _SOFT_RES_TAPE EQU OFC99H :P _START_PR_BUFF EQU OFC9CH :P _START_PR_CH EQU OFC9FH :P _START_RD_1_BLO EQU OFCA2H :P _START_RD_CH_DE EQU OFCA5H ;P _START_RD_KBD EQU OFCABH :P _START_WR_1_BLO EQU OFCABH :P _START_WR_CH_DE EQU OFCAEH :P _SYNC EQU OFCBIH :P _TRIM_FILE EQU OFCEDH :P _WRITE_BLOCK EQU OFCF6H :P HRITE_FILE EQU OFCD5H :P WR_1_BLOCK EQU OFCB4H :P WR_CH_DEV EQU OFCB7H :P

4.1.8 EOS Error Codes

DCB_NOT_FOUND	EQU	1
DCB_BUSY	EQU	2
DCB_IDLE_ERR	EQU	3
NO_DATE_ERR NO_FILE_ERR FILE_EXISTS_ERR NO_FCB_ERR MATCH_ERR BAD_FNUM_ERR EOF_ERR TOO_BIG_ERR FULL_DIR_ERR FULL_TAPE_ERR FILE_NM_ERR RENAME_ERR DELETE_ERR RANGE_ERR		4 56 7 8 9 10 11 12 13 14 15 17
CANT_SYNC1	EQU	18
CANT_SYNC2	EQU	19
PRT_ERR	EQU	20
RQ_TP_STAT_ERR DEVICE_DEPD_ERR PROG_NON_EXIST NO_DIR_ERR	EQU EQU EQU	21 22 23 24

4.2 OS 7

4.2.1 Introduction

This subsection presents an overview of the ColecoVision Operating System, referred to as the OS or OS_7. In contrast to the typical definition of an operating system as a runtime executive, the ColecoVision OS is a run-time user's library that provides access to modules which control events related to graphics, sounds, timing, etc.

Appendix 3 contains the detail sections of the ColecoVision Programmer's Manual, which document each module. Included are the calling sequence, input/output parameters, side effects, and and calls to other OS routines. The documentation assumes that the programmer is familiar with the Z80 instruction set.

The ColecoVision OS provides power-up procedures and system-defined entry points for the user. It handles input/output operations and housekeeping functions. The OS provides the displayable ASCII character set and vectors into the cartridge memory space that correspond to the Z80 hardware restart and interrupt vectors.

The OS software can be divided functionally as follows:

- Graphics Generation
- Sound Generation
- Interrupt Handling and Write Deferral
- Timing
- Controller Interface
- Boot-up
- Miscellaneous Utilities
- Defined Reference Locations

4.2.2 Graphics Generation Software

Software in this area is divided into the chip driver level, the table level and the object level. First, there are chip drivers for the TMS 9928 level. Software to initialize and manipulate tables belongs to the table level. Video graphics are generated by objects on the object level. Each object has its own definition of tables, frames and display locations called out by the user.

4.2.3 Sound Generation Software

Sound generation software produces tones and music by table "look-up." The software also has provisions to produce special effects. A prioritization scheme allows important

sounds to overlay less important background sounds without destroying their continuity.

4.2.4 Interrupt Handling and Write Deferral Software

When the OS is accessing the VDP register or VRAM, protection may be needed when a VDP interrupt occurs. Interrupt deferral routines handle this situation when top-level graphics software is in use. Bulletin No. 10 in Appendix D of the ColecoVision Programmer's Manual lists additional interrupt deferral software to fix the problem at low-level VDP access.

4.2.5 <u>Timing Software</u>

In a real-time application, timing is essential to the system operation. The OS timing software manages the software timers allocated by the user. It allows the user to start the timer, update the timer, check if it is timed out and then relinquish the timer. The number of software timers that can be supported depends on available cartridge RAM.

4.2.6 Controller Interface

The controller interface has several features:

The process of scanning, debouncing and decoding controller inputs is automatic upon invoking the OS routines.

The software only debounces and decodes those inputs that the user wishes to access.

The user has the option of bypassing automatic scanning and decoding and accessing the raw controller data, if necessary.

4.2.7 Boot-Up Software

The OS performs certain initialization tasks, such as turning off the sound chip, initializing buffers and flags, and display of the standard logo screen. If no game cartridge is present, it warns the user to turn off the system before attempting to insert a cartridge or expansion module.

If a cartridge is present, the OS reads the cartridge title from a predefined location and displays it along with copyright information. This screen is displayed for a short time before the OS relinquishes control to the cartridge software.

4.2.8 Miscellaneous Utilities

This software includes some low-level utilities, evolved in conjunction with the graphics and sound packages. It inclu-

des a nibble arithmetic package and a routine that displays a standard game-option screen.

4.2.9 <u>Defined Reference Locations</u>

OS_7 has a number of system-defined reference locations in the areas of cartridge RAM, OS ROM and Cartridge ROM. The user-accessible locations are listed in the file, OS_SYMBOLS, Rev. 2 (Appendix F of the ColecoVision Programmer's Manual). It is IMPORTANT for the user to call the OS subroutines through those authorized entry points (Jump Table). The user also must be aware of the limitation of using cartridge RAM as a scratch pad due to the predefined OS data areas and stack memory. Locations at the beginning of the cartridge program may be accessed for pointers to the tables and buffers in CRAM. Also in this area, restart and interrupt vectors are defined for the user. Section X of the ColecoVision Programmers Manual lists all the system defined locations in all memory areas.

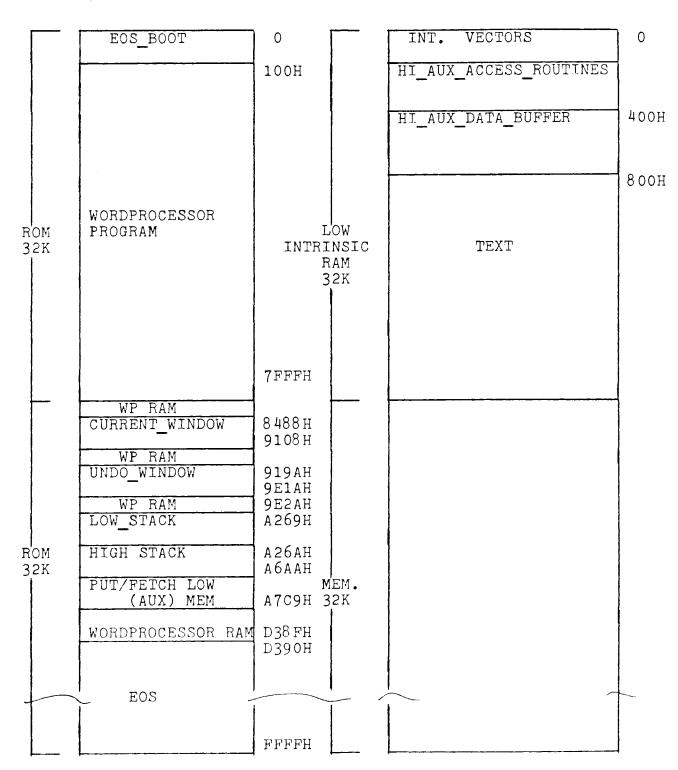
5. TAPE FORMAT AND OTHER TAPE CONSIDERATIONS

There are two types of tape format for ADAM data packs. Type GW tapes have block 0 at the end. Type HE tapes have block 0 in the middle. An example of a type GW is The Buck Rogers™ Plaent of Zoom™ Super Game. Both SmartBASIC and the blank data pack are examples of type HE tapes.

The capacity of the tape is 256K. Blocks are defined as 1K in length. There are two tracks, 128 blocks per track. Block numbers refer to the block of data on a data pack referenced by application software. The following illustration shows physical block positions.

FORMAT GW (Block 0 at the end)

< tape m	notion		
0	40	7F	block no. track 0
80	CO	 FF	track 1 block no.
	Format HE (Block 0 i	n the middle)	
< tape mo	tion		
40 ========	7F 0	3F	block no. track 0
80	BF CO	FF	track l block no.


Considerations in Choosing Tape Format

Type GW tapes do not contain a directory. Type GW tapes cannot be readily copied, so users are not able to easily copy one GW tape to another GW tape.

Type HE tapes are compatible with other type HE tapes. If a program needs to store information on a separate data pack, access or be accessed by other software, then a type HE tape is suggested.

6. SmartWRITER

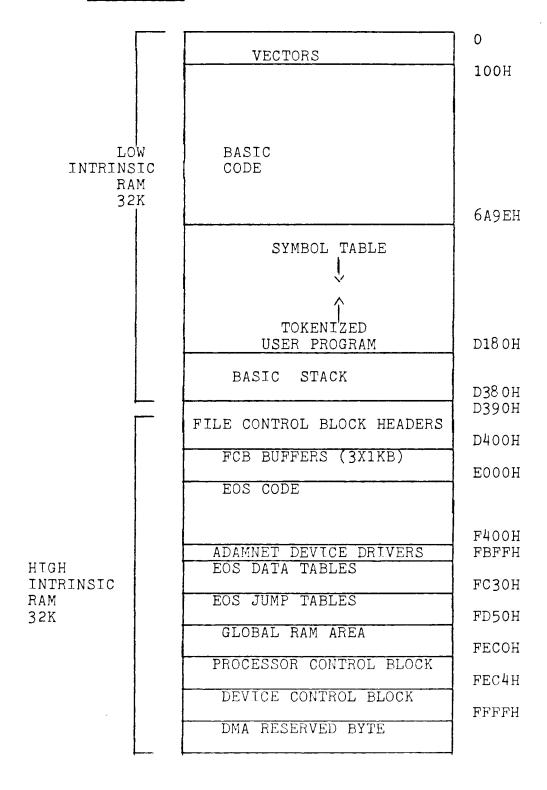
6.1 Memory Map

6.2 SmartWRITER-Compatible Files

Files must meet certain criteria to be compatible with SmartWRITER. SmartWRITER files have the user file attribute bit set, and the last character of the file name is H. SmartWRITER files start with a header and ASCII information begins after the header. The first two bytes of the file define the length of the header. The third byte contains the application code (1 for SmartWRITER). The format of the header is determined by the application code. Backup versions of SmartWRITER files have a lower-case "h" as the file type.

An example of a SmartWRITER file follows:

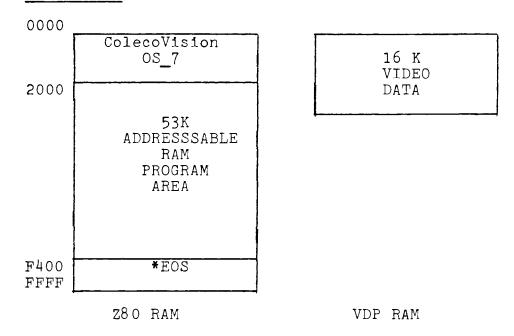
BYTE DESCRIPTION HEADER SIZE LOW (=256) 0 HEADER SIZE HIGH (=0) 1 FILE_TYPE_CODE 2 (=1)3 TOP MARGIN 4 BOTTOM MARGIN 56 LEFT MARGIN RIGHT MARGIN 7 LINE SPACING TAB \overline{A} RRAY (1) [0 = NO MRG, 1 = MRG] 89 TAB ARRAY (80) [0 = NO MRG, 1 = MRG] 90 UNUSED 258 UNUSED 259 FIRST ASCII DATA BYTE ASCII DATA n


7. SmartBASIC

SmartBASIC is generally source-code compatible with Applesoft BASIC. PEEKS and POKES, and other machine-dependent features of Applesoft BASIC are different in SmartBASIC. SmartBASIC graphics feature four modes:

Text mode - 24 lines of 31 characters
low resolution graphics - 40 x 40, with four lines of
text
high resolution graphics - 256 x 160 with four lines of

text
Pure high resolution graphics - 256 x 192


7.1 Memory Map

8. SUPER GAMES AND OTHER PROGRAMS USING 057

Refer to Chapter 5, Section 2 for a detailed explanation of the Buck Rogers[™] Planet of Zoom[™] Super Game. The Buck Rogers game serves as an example for developers of super games.

8.1 MEMORY MAP

* ADAM EOS starts at D390. In this example of a super game, only the AdamNet device drivers in EOS are needed. Refer to Chapter 3, Subsection 4.1.1, EOS Overwrite Addresses.

Address 0000 through 1FFF

OS_7 ROM is available for program use and requires 8K.

Address F400 through FFFF

EOS is used to access peripherals and files, and requires 3K.

Address 2000 through F3FF

The remaining 53K of Z8O RAM is available for program and data storage. OS 7 uses RAM from 7000H through 73FFH.

Address 0000 through 3FFF VDP RAM

Unused portions of the 16K VDP RAM may be used as temporary storage. VDP RAM may not be loaded directly from tape, but must be read into intrinsic RAM, then transferred using one of the VDP access routines.

PRELIMIN.	ARY RELEASE	CHAPTER 3	SOFTWARE
9.	ROM-BASED CARTRIDGE PROGRAMS		
9.1	Memory Map		
0000			
2000	0S_7		
7000 73FF 8000	CARTRIDGE RAM		
	CARTRIDGE ROM		
	(UP TO 32K)		
नन्त्र	}		

CHAPTER 4: OPTIONAL PERIPHERALS

This chapter will be developed as optional peripherals become available.

Milliseconds

CHAPTER 5: DEVELOPMENT TOOLS AND UTILITIES

1. SUPER GAMES

This section explains background loading, tape mapping and playability of super games and other programs that use OS_7. Familiarity with OS_7 is assumed. The information and examples in this section should help programmers who are accustomed to cartridge software adapt to tape-based software more easily.

1.1 Background Loading

The background loading software (see Subsection 1.7) is designed to load overlays from data pack to RAM while the program is executing. Care must be taken that data being loaded during execution does not destroy data that is controlling execution. A good approach is to use two buffers. One buffer is loaded while the other is controlling program execution.

1.2 Timing Considerations

Each background block read takes about one second assuming no retries and no repositioning. Retries take about 1.2 to 1.4 seconds and only happen if the checksum fails to compare on read. There are a maximum of three attempts to read a block on the tape, then the checksum failed code is sent. Repositioning takes as long as one second to find the current position on tape (approximately one second for every 80 inches of tape travel). Repositioning is automatically handled by the drive. For the NMI driven tape manager, additional overhead in transfer time averages 8 milliseconds (1/2 60hz clock tick). Buffering data for transfer to VDP-RAM results in Z80 CPU usage assuming use of WRITE_VRAM. The following table shows the Z80 CPU time used in VDP-RAM writes.

TABLE 4: Z-80 CPU TIME FOR VDP-RAM WRITES

Number of bytes to transfer

1	0.077
10	0.175
100	1.16
1000	11.25
2000	22.4
4000	44.8
8 0 0 0	89.6

1.3 Mapping

The programmer must lay out the data to minimize load time, through mapping. Minimizing load time is the most crucial aspect of designing super games.

Since the data on tape is a memory image, it may be read directly into Z80 RAM and immediately executed. The programmer should diagram the tape blocks on a time line, following the timing considerations in Subsection 1.2. Some action on the screen must hide the loading process. Rewinding and positioning time must be included in calculating load size and load time.

An example of a time line diagram follows. It shows the screen actions and what is loaded in background while the action is taking place.

TIME IN SECONDS	SCREEN	LOADING	ADDRESS	BLOCK NUMBER
0 1 2 3 4 5	BLANK	COLD START MAIN	C8 00H 8 000H 8 4 00 8 8 00	0 1 2 3
4 5 6 7	TÎTLE SCREEN	OVERLAY 3	8 000 9000 9400 98 00	4 5 6 7
7 8 9 10 11	LOGO SCREEN		9000 A000 A400 A800	8 9 10 11
12 13 14 15	SELECT OPTIONS		ACOO BOOO B4OO B8 OO	12 13 14 15
16 17 18 19	GAME START		BCOO TRACK 1 SECTO OF REWIND TIM	16 R 1 128
20 21 22 23 24		OVERLAY 4	C000 C400	129 130
24 25		ETC	C8 00 CC00	131 132

TIME LINE DIAGRAM

Overlay Control Blocks

To read memory images into RAM, three pieces of information are required. They are:

Start of memory buffer of transfer address 2 bytes

Start of memory image on tape or block number 2 bytes

Number of 1K Blocks in the memory image 1 byte

This information is organized into a 5-byte block called an Overlay Control Block (OCB). The overlay control blocks are organized into an Overlay Control Table (OCT). The OCT controls the loading of data from tape using the tape interface software described in Subsection 1.6. The table should be pointed to by a two byte pointer and it should be terminated by a byte set to FF. The Overlay Control Table should be loaded immediately after the cold start loader.

1.4 Start of Game

EOS loads Block 0 (the cold start loader) to C800H and passes control to it. The cold start loader then initializes the system and loads enough of the main program to allow some user interaction to begin. The following rules define the interface to the cold start loader.

- 1. The main program is loaded to location 8000H.
- 2. Immediately following the ColecoVision OS vectors at 8000H, and the game name, is a pointer to the OCT. The first entry in the OCT describes the main program.
- 3. Control is passed to the main program by the vector at address 800AH as defined in the OS 7 PRIME.
- 4. The main program must contain the OCT in the first 1K block.
- 5. The main program must contain the background loading routines described in Subsection 1.7. They are required to reside in the first 3K.
- 6. The main program must immediately display graphics or allow some user interaction.
- 7. Once control is passed to the main program, game play must start as soon as possible.
- 8. When control is transferred to the main program, Register B contains the boot device ID. Register B should be stored at the globally defined address DEVICE ID.

Subsection 1.5 is an example of the 8000H area code which interfaces to the cold start loader. Compare this to the area defined in OS_{2} .

PAGE 1

ĊΤ.

100

0

0

Ō

 \mathbb{H}

>

7 e

à

Co

Q.

e-

nte

rfa

ဂ

lct

0

 \mathbf{C}

0

à

 Ω

rt

Load

er

Fri. 18 May 1984, 14:59

```
SOURCE LINE
LOCATION OBJECT CODE LINE
                     1 -280-
                     4.3 This is an example of the OCB pointer following the game name
                     5 isection and how to store the boot device number for future use-
                     6 The RAM at 8000H is defined in greater detail in the Colecovision
                     7 | Programmers Manual.
                                 ORG
                                           8000H
                                 E QU
                                           0000
           < 80000>
                    11 : ** CARTRIDGE SOFTWARE POINTERS 8000H **
                    12 1
                    13
                                                        :Cartridge present: Colecowision loge
                                           55.AA
                                 HFX
   9000 SSAA
                    14
                                                        Pointer to the sprite name table
                                 DEFM
   BOB 2 0000
                    15
                                           ____
                                                        ipointer to the sprite order table
                                 DEFM
   8004 0000
                    16
                                                        Pointer to the working buffer for MR_SPR_NN_TBL .
                                 DEFW
                    17
   8004 0000
                                                        Pointer to the hand controller input areas
                    18
                                 DEFM
   8008 0008
                                                        JEntry point to the user pregram
                                           MAIN PROG
                                 DEFM
   BODA BOSE
                    19
                    20
                    22
                                                         IRST DE
                    23
                                           DCT
    800C C38039
                                 JP.
                                           RST
                                                         RST 10
    #DOF C38039
                    24
                                                         RST 18
                                 JP
                                           RST
    #012 C38039
                     25
                                                         SRST -20
                                 JP.
                                           RST
    8015 C38039
                     26
                                                         185T 28
                                 JP
                                           RST
                    27
    BD18 C38039
                                                         :RST 30
                                 JP.
                                           RST
    8818 C38039
                     21
                     29
                     30 & THIS IS THE MASKABLE INTERRUPT SOFT VECTOR
                                           HASK INT
                                 12
                     31
    881E C3893C
                     32
                     33 & THIS IS THE MMI SOFT VECTOR.
                                           VOPINT
                                 JP.
    8021 C3803A
                     34
                     35
                       36
                     37
                              $4 Good name section **
                     3 8
                     39
                                 DEFR "SUPER"
    8024 5355504552
                     40
                                 DEFR "/GAHES ".10H."/1984"
    8029 2F47414045
                     41
    802E 5320102F31
    8033 393834
                     42
                                  1DH = Copyright symbol
                     43 1
                                  1EH.1FH = Trade mark symbol
                     44 1
                     46 ***********************
                     47
                                  EXT
                                            DCB
                     48
                     49
                                                    ; A pointer to the DCB must follow the
                                  DEFM
     8036 0000
                     50
                                                    idate in the game name.
                     51
                     5.2
                                                    This is the default DEVICE_ID. See MAIN_PROG (below) for applications
                                  DEFB
     8038 08
                     53 DEV ID
                                                     shooted from a different device.
                     54
                     55 *****************************
```

MEMLETT-PACKARDI CART (c) Coleco 1984

FILE: CART: ROB

FILE: CARTIRUB	HEWLETT-I	PACKARD: CART	(c) Coleco 1984	Fri, 18 May 1984, 14:59 PAGE 2
LOCATION DBJECT CODE	FINE 2001	ROE LINE		
	57 💠 🌣 🌣 🗢 🗢 🗢 🗢	******		**********
	58			
8039 C9	59 RST	RET	:Z80 restarts to be defin	e d
	60			
	61 :			
803A ED45	62 VOPINT	RcTN	:Non maskable interrupt p	
	63		:Normally used for critic	al timing:
	64		; music	
	65		processing timers	
·	65 67		sprite motion pro	cessing
	63 :			
803C ED4D	69 MASK_IN	T RETI	;280 maskable interrupt v	actor
903C ED43	70	· KCII	Normally used with spinn	
	71		steering wheel	e. zmf(fii.
	72		sports controller	
	73		roller controller	
	74		, , , , , , , , , , , , , , , , , , , ,	
	75	EXT	_HARD_INIT,COLDSTART	
803E	76 MAIN_PR	CG		
803E 78	11	ŁD.	A • B	; Main prog is entered with the Device ID in the B registe
	7.8			If it is not saved, the DDP manager or application will o
	79			trun from Drive A.
803F 328038	8 0	LD	CDEV_IDJ.A	
	81			
	82 : The r	est of the ap	plication follows	
Errors= 0				

```
FILE: L. T:ROB
                            EROSS REFERENCE TABLE
                                                                PAGE
LINE#
         SYMBOL
                        TYPE
                                  REFERENCES
   15
       COLDSTART
   53
       DEV_ID
                              80
   76
       MAIN_PROG
                              19
   63
       MASK_INT
                              31
   48
       DCB
                              50
   5 9
       RST
                              23,24,25,26,27,23
   62
       VOPINT
                              34
   75
       _HARD_INIT
   10
                              15,16,17,18
```

1.6 Tape Interface Software

The tape interface software loads RAM from tape in background using the OCT structure defined in Subsection 1.7. The entry points for these modules are described in the following subsections. The tape manager programs are interrupt driven and should be called on every clock cycle (60Hz) to drive background loading. The OCT, DDP MANAGER (Subsection 1.10) and TAPE INTERFACE (Subsection 1.9) or DDP INTERFACE (Subsection 1.11) must be linked into the program.

1.6.1 Tape Manager Programs

The tape manager consists of two interchangeable parts dependent upon environment.

TAPE_MANAGER

The program TAPE_MANAGER (shown in Subsection 1.8) is designed for use on the HP64000. This program allows for simulated tape I/O via the HP disk, and should be used in conjunction with TAPE_INTERFACE.

DDP MANAGER

This program, shown in Subsection 1.10, replaces the tape manager in working games. Entry points and interface are identical to the TAPE_MANAGER except that this module uses EOS calls to manipulate the tape. DDP_MANAGER should be used in conjunction with DDP_INTERFACE.

The final version of the game should have the DDP_MANAGER installed. The tape managers are fully interchangeable.

1.6.2 TAPE INTERFACE

TAPE_INTERFACE consists of a set of entry points and data passed in the accumulator. DDP_INTERFACE is similar to TAPE_INTERFACE, except that some labels are different.

Entry Points	Accumulator	Comments
LOAD_OVERLAY	OVERLAY_NUMBER	The code uses the overlay number to look up OCT information. The overlay is loaded from tape to Z80 RAM.
WRITE_OVERLAY	OVERLAY_NUMBER	As in LOAD_OVERLAY, but data flow is from RAM to tape.
ABORT_TAPE		Aborts all tape functions. Resets tape. Makes tape ready to immediately receive new commands. Does not reposition tape.
TEST_TAPE		Returns status of tape.

Status from TEST-TAPE may show the following conditions.

0	OK
1	Checksum failed
2	Block not found
3	Tape not present
4	Device not present

The checksum shows that after three retries, the tape block was not read correctly and the data transferred by the read command is not valid.

Background

Loa

Ωı

ing

Software

(2)

```
MENLETT-PACKARD: DC5 (c) Coleco 1982 Confidential
FILE: OCB:TOS
                                                                                      Tue, 15 May 1984, 20:35
                                                                                                                  PAGE I
LOCATION OBJECT CODE LINE
                          SOURCE LINE
                     1 "790"
                     3 NAME "Rev D - DTT"
                       DESCR_DC8
                                       MACRO
                                            -GOTO ENDESCR_OCB
                                     DIT
                       Author:
                        Project:
                                     MAFER, A132
                    10 Starting date:25mar83
                       **********************
                    12
                    13
                        # OC#
                        ****************
                    14
                    15
                    16
                              Rev. Date
                                               Name
                                                        Change
                    17
                    18
                                   25mer83 011
                              0
                                                     Initial Pseudo code
                    17
                        NAME: DCB (DVERLAY CONTROL BLOCK TABLE)
                    20
                              THE DCB DESCRIBED BELOW IS AN EXAMPLE DNLY AND DOES NOT DESCRIBE
                    21
                              ANY GAME. I AM SHOWING A MAIN PROGRAM STARTING AT BOODH.
                    22
                              THE BACKUP COPY OF THE COLD START LOADER ALSO GETS LOADED AT 8000H.
                    23
                              THERE ARE 18 CVERLATS DESCRIBED IN THIS DCT. THE LAST TWO ARE
                    24
                    25
                              SPARE. TWO DESCRIBE VANITY SCREEN AND DATA
                    26
                    27 ENDESCR_DC8:
                    28
                             MEND
                    29
                    30 SEXTERNAL DATA AREAS USED:
                    31 :
                             FXT
                    32
                    33 :GLOBAL DATA AREAS DEFINED:
                    34
                             GLA DCB
                    35
                             EXT DEB_PTR
                    36
                    37 ILDCAL EQUATES
                    38
                    39 IGLOBAL EQUATES
                    40
                    42 DCB MACRO EPI.EP2.EP3 :LOAD ADDRESS.BLDCK NUMBER.NUMBER OF BLOCKS
                    43 * REV D DTT. 7/12/83 coded and tested
                    44
                              DEFW LP1
                                                        TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM)
                    45
                              DEFM
                                     EP2
                                                         BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
                    46
                              DEFA
                                     LP3
                                                         INUMBER OF IN BLOCKS TO TRANSFER
                    47
                              CRBM
                    49
                    50
                              P906
                    51
   0000
                    52 OCa:
   0000
                              000
                                     080004,1.16
                    53
                                                                           :MAIN PROGRAM
                     • • REV O OTT. 7/12/33 coded and tested
   0000 6000
                                                         TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM)
                             DEFM
                                    08000H
   0002 0001
                              DEFM
                                                       BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
   0004 10
                                                        NUMBER OF IK BLOCKS TO TRANSFER
                              DEFB
                                    1.6
   0.005
                    54
                              000
                                     030004,1+16,15
                                                                          SBACKUP MAIN PROGRAM
```

FILE: DC' DS

003C C000

DEFW

P000004

TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM)

```
LOCATION OBJECT CODE LINE
                              SOURCE LINE
                        + # REV 0 DTT. 7/12/83 coded and tested
    0005 8000
                                 DEFW
                                          H0000B0
                                                                   TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM)
    0007 0011
                                 DEFM
                                          1+16
                                                                 BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
    0009 10
                                 DEFS
                                          16
                                                               INUMBER OF 1K BLOCKS TO TRANSFER
    000A
                       55
                                 DCB
                                          02400H,1+16+16.7
                                                                                    : OVERLAY 3
                        + # REV D DTT. 7/12/83 coded and tested
    000A 2400
                                 DEFW
                                          024004
                                                                    TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM)
    0000 0021
                                 DEFW
                                          1+16+16
                                                                    BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
    000E 07
                                 DEF8
                                                              INUMBER OF 1K BLOCKS TO TRANSFER
    000F
                       56
                                 DCB
                                          OCOOOH.1+16+16+7.8
                                                                                    :DVFRLAY 4
                        + # REV 0 DTT. 7/12/83 coded and tested
    000F C000
                                                                    :TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LDADED IN RAM)
                                 DEFW
                                          OC 0 0 0 H
    0011 0028
                                 DEFW
                                          1+16+16+7
                                                                       SBLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
    0013 08
                                 DEFS
                                          8
                                                              INUMBER OF IK BLOCKS TO TRANSFER
    0014
                       57
                                  DCB
                                          02400H,1+16+16+7+8,6
                                                                                    : OVERLAY 5
                          * REV 0 DTT. 7/12/83 coded and tested
    0014 2400
                                  DEFW
                                          024004
                                                                    TRANSFER ADDRESS OF THE OVERLAY CHHERE DOES IT GET LOADED IN RAM)
    0016 0030
                                  DEFM
                                          1+16+16+7+8
                                                                         BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
    0018 06
                                  DEFS
                                          6
                                                               INUMBER OF IK BLOCKS TO TRANSFER
    0019
                       58
                                  DCB
                                          OCOOOH,1+16+16+7+8+6,8
                                                                                    : OVERLAY 6
                          # REV 0 DTT. 7/12/83 coded and tested
    0019 C000
                                  DEEW
                                          DCODDH
                                                                    TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM)
    0018 0036
                                  DEFW
                                          1+16+16+7+8+6
                                                                           BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
    0010 08
                                  DEF3
                                                               INUMBER OF IK BLOCKS TO TRANSFER
    001E
                       59
                                  OCB
                                          02400H,1+16+16+7+8+6+8,6
                                                                                    :DVERLAY 7
                          * REV 0 DTT. 7/12/83 coded and tested
    DOIE 2400
                                  DEFW
                                          024004
                                                                    TRANSFER ADDRESS OF THE OVERLAY (WHERE DDES IT GET LOADED IN RAM)
    0020 003E
                                  DEFW
                                          1+16+16+7+8+6+8
                                                                             BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
    0022 06
                                  DEF8
                                                               INUMBER OF 1K BLOCKS TO TRANSFER
    0023
                                  DCB
                       60
                                          UC000H,1+16+16+7+8+6+8+6,5
                                                                                    : OVERLAY 8
                          * REV 0 DTT. 7/12/83 coded and tested
    0023 C000
                                 DEFW
                                          000004
                                                                    TRANSFER ADDRESS OF THE OVERLAY (WHERE DDES IT GET LOADED IN RAM)
    0025 0044
                                 DEFW
                                                                               BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
                                          1+16+16+7+8+6+8+6
    0027 06
                                  DEFB
                                                              INUMBER OF 1K BLOCKS TO TRANSFER
    0028
                                  OCB
                       61
                                          02400H.1+16+16+7+8+6+8+6+6.4
                                                                                    :DVERLAY 9
                          # REV 0 DTT. 7/12/83 coded and tested
    0028 2400
                                 D≅F₩
                                          024004
                                                                    TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM)
    002A 004A
                                 DEFW
                                          1+16+16+7+8+6+8+6+6
                                                                                 IBLUCK NUMBER OF THE FIRST BLUCK IN THE DVERLAY
    002C 04
                                 DEF8
                                                              INUMBER OF IK BLOCKS TO TRANSFER
    0020
                                 008
                                          07C00H.128+1.1
                       62
                                                                                    REWIND (NEVER ACTUAL EXECUTEABLE CODE)
                          * REV 0 DTT. 7/12/83 coded and tested
    0020 7000
                                 DEFM
                                          07C00H
                                                                   :TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM)
    002F 0081
                                 DEFW
                                          128+1
                                                                  IBLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
    0031 01
                                 DEFB
                                         1
                                                              INUMBER OF 1K BLOCKS TO TRANSFER
    0032
                       63
                                 осв
                                          OC000H.128+1+13.14
                                                                                    :OVERLAY 11
                        + # REV 0 OTT. 7/12/83 coded and tested
    0032 5000
                                 DEFW
                                          000004
                                                                   :TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM)
    0034 008E
                                 DEFM
                                          128+1+13
                                                                      IBLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
    0036 OE
                                 DEF3
                                         14
                                                                INUMBER OF 1K BLOCKS TO TRANSFER
    0037
                                 OC B
                                          02400H,128+1+13+14,7
                       64
                                                                                    SOVERLAY 12
                          # REV 0 DTT. 7/12/83 coded and tested
    0037 2400
                                 DSFW
                                                                   TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM)
                                          02400H
    0039 0090
                                 DEFM
                                          128+1+13+14
                                                                         TRUCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY
    0038 07
                                 DEFR
                                          7
                                                              *NUMBER OF 1K BLOCKS TO TRANSFER
    003C
                                 CCB
                                          00000H,128+1+13+14+7.1
                                                                                    :DVERLAY 13
                        + # REV O DIT. 7/12/83 coded and tested
```

+ # REV 0 DIT 7/12/83 coded and tested

OFFFFH

FF

OFFFFH

DEFH

DEFW

DEFW

DEF8

HEX

71

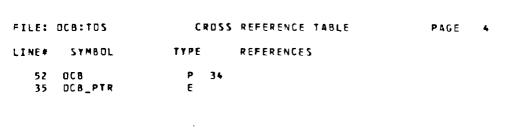
:TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM)

:BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY

:DEFINES THE TERMINATOR

NUMBER OF 1K BLOCKS TO TRANSFER

DEFW 128+1+13+14+7 ;BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY 003E 00A3 1 : NUMBER OF 1K BLOCKS TO TRANSFER DEFB 0040 01 0041 DC 8 030004,128+1,10 COVERLAY 14 VANITY SCREEN 66 + # REV 0 DTT. 7/12/83 coded and tested 0041 3000 DEFW 030004 ITRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM) BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY 0043 0081 DEEW 128+1 10 : NUMBER OF 1K BLOCKS TO TRANSFER 0045 04 DEF3 05800H.128+13.1 DCB :OVERLAY 15 VANITY DATA DVERLAY 0046 + # REV D DTT. 7/12/83 coded and tested 0046 5800 DEFW 05800H :TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM) 128+13 BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY 0048 0080 DEFW 004A 01 DEFS INUMBER OF 1K BLOCKS TO TRANSFER DCB OCOOOH.128+1+13+14+7+1.6 :OVERLAY 16 0048 68 + # REV D DTT. 7/12/83 coded and tested 00000H 128+1+13+14+7+1 :TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM) 004B C000 DEFW 004D 00A4 DFFW BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY 6 SNUMBER OF 1K BLOCKS TO TRANSFER 004F 06 DEFA 0.08 OFFFFH.OFFFFH.OFFH :SPARE 0050 69 + # REV D DIT 7/12/83 coded and tested DOSO FFFF DEFW DEFEEM :TRANSFER ADDRESS OF THE OVERLAY (WHERE DOES IT GET LOADED IN RAM) OFFFFH 0052 FFFF DEFM BLOCK NUMBER OF THE FIRST BLOCK IN THE OVERLAY OFFH 0054 FF DEFB INUMBER DE 1K BLOCKS TO TRANSFER 0055 70 DCB OFFFFM.OFFFFH.OFFH :SPARE


LOCATION DBJECT CODE LINE SOURCE LINE

0055 FFFF

0057 FFFF

0059 FF

005A FF

Just

 ∞

TA

۳đ

H

MANAGER

```
FILE: TAPE_MANA:TOS
                       MEMLETT-PACKARD: TAPE_MANAGER (c) Coleco 1983 Confidential Tue, 15 May 1984, 20:30
                                                                                                                     PAGE 1
LOCATION OBJECT CODE LINE
                          SOURCE LINE
                      1 "280"
                      3 NAME TROV 6 - DTTT
                      5 DESCR_
                                            MACRO
                                              .GOTO ENDESCR_1
                      8 Author:
                                      DIT
                      7 Project:
                      10 Starting date: 10feb83
                     11
                     12
                         Prom release Date:
                     1.3
                         Prom release Revi
                     14
                     15 Header Rev: 3
                     16
                     17 ***********************
                     18 .
                     19 # TAPE_MANAGER
                     20 *
                     21
                         ******************
                     22
                     23
                               Rev Mistory Come line note indicating the change)
                     24
                      25
                               Rev. Date
                                    11/16/83 DTT
                      26
                                                       ADDED DEVICE ID TO SIMULATE DEVICE INDEPENDENCE
                      27
                                     12spt#3
                                              DIT
                                                       MODIFIED ERROR STSTEM TO WRITE ERRORS TO CSA AREA
                      28
                                    D8aug83
                                              DIT
                                                       SIMULATES WRITEST
                      29
                                     07ju183
                                              DIT
                                                        ADDED KILL TAPE/CSA
                      30
                                     30 jun 53
                                              DTT
                                                       STATE MACHINE FOR MULTI TASKING
                                                        BINK ON I/O ERROR, REMOVE TIMING STUFF, EI AND DI ADDED.
                      31
                               1
                                    OSeor83
                                              DIT
                      32
                                    10feb83
                                              DTT
                                                       Initial Pseudo code
                      33
                         NAME: TAPE_MANAGER (DVERLAY CONTROL)
                     35
                      37
                         FUNCTION: (LOAD OVERLATS VIA SIMULATED I/O WITH THE HP64000)
                      38
                     33
                     40 INPUTS: (ACCUMULATOR = OVERLAY NUMBER)
                     4.1
                     42
                         DUTPUTS: (DVERLAY IS LOADED TO RAM ADDRESS)
                     44
                     45
                     46 PSEUDOCODE (PASCAL type pseudocode of procedure.)
                     4.9
                     49
                     5.0
                     51
                     52
                         :~--->:
                                    IDLE
                                               :
                                                                               RENAME
                     5.3
                          :
                                                                          :
                                                                                          :
                     5 6
                                                   :
                     56
                         :
                                         /:> overlay request? N
                                                                                  :
                     51
                                                                                  :
```

:____:

5.3 :

FILE: TAPE_MANA:TOS HEWL	ETT-PACKARD: TAPE_MANAGER (c) Coleco 1983 Confid	dential	Tue, 15 May 1984, 20:30	PAGE 2
LOCATION OBJECT CODE LINE	SDURCE LINE			
59		:		
60		· ·		
61 :		:		
62		:		
63,		:		
64		\:/		
65				
66	:	:	:	
67	: READ : <	: DPEN	:	
69	: FIRST :	:	:	
69	: RECORD :	:	:	
70				
71	:			
12 :	:			
73	\:/			
74 :				
75 :		:	:	
76 :	: READ :	: MOVE DATA	:	
77 :	DATA = end of file? N	: FROM BUFFER	:	
78 :	: RECORD : <	: TO RAM	•	
73 :		:		
80 :		:		
81 :		end of file?	Y	
B 2 :		\:/		
83 :			****	
84 :	:	:	:	
85	: PRE IDLE STATE :<	-: CLOSE	:	
86	:(WAIT FOR CLOSE):	:	:	
87	:	:	•	
89	***		-	
89 END	ESCR_1 MEND			

```
HEWLETT-PACKARD: TAPE MANAGER (c) Coleco 1983 Confidential Tue, 15 May 1984, 20:30
FILE: TAPE_MANA:TOS
                                                                                                    PAGE
                        SOURCE LINE
LOCATION OBJECT CODE LINE
                  91 DESC ..
                                 MACRO
                     . GOTC
                                 DESC a
                  92
                     94
                      Each transition state looks like this:
                  95
                  96
                  97
                       from previous
                  99
                         state
                                 1:/
                 100
                 101
                 102
                                            I/O errors? Y
                 103
                            : TRANSITION
                                                              ERROR STATE
                 104
                        :===>:
                                                              (terminate)
                 105
                                          :====:
                 106
                                                                    1:1
                 107
                 108
                 103
                          sim i/o
                                             1:/
                 110
                                             ----- to state 6
                 111
                          function
                                                       :========)
                 112
                          complete? N
                                         : TEST FOR
                 113
                                         : ABDRT
                                                       :to state 7
                 114
                                         : REQUEST
                                                       115
                 116
                                           пo
                                         abort : to next
                 117
                 118
                                              : state
                                              1:/
                 113
                 120
                 121 DESC_a
                                  MEND
```

```
123 DESC_2 MACRO
124 - GOTO
          DESC 2
125 4
127 3
128
129
    COMMON ATTRIBUTE AREAS (COMMUNICATION SUFFER WITH HP)
130
    ALL VALUES ARE HEXIDECIMAL
131
132
    1) ASSIGN FILENAME TO CA
133
                      CA+n
      134
     135
    * 8A :LENGTH :FILENAME ----> : USER ID : NOT
136
         :BYTE :UP TO 9 BYTES : UP TO 5 BYTES : USED---->
137
     135
     LENGTH_BYTE := (((C(LENGTH DF FILE NAME)+1)/2)-1)*32) + ((LENGTH DF USER ID)/2)*8)
139
     FILENAME MUST BE ODD NUMBER OF BYTES LONG MAY BE PADDED WITH ONE SPACE.
140
     USER ID MUST BE EVEN NUMBER OF BYTES LONG MAY BE PADDED WITH ONE SPACE.
141
142
    2) OPEN
143
      CA
         CA+1 CA+2
                144
    : 81 : 04 : 00 : NDT
145
146
    147
148
     CA+1 MUST BE 04HEX DESIGNATES ABSOLUTE FILE WILL BE OPENED.
149
     CA+2 MUST BE ODMEX DESIGNATES DISK NUMBER.
150
    3) CLOSE
151
152
      CA
     153
154
    : 82 : NOT
    : USED ----->
155
     156
157
158
    4) READ
      153
                                    CA+6
160
     161
    : 87 : 80 : *BYTES TO LOAD : N/A : N/A : LOAD ADDRESS
    : : MSB : LSB : : MSB : LSB
162
163
     164
     CA+1 DEFINES THE SUFFER LENGTH IN WORDS - 1 MUST BE LDADED SEFORE CALLING SIM I/D
165
     CA+2 DEFINES NUMBER OF BYTES TO MOVE TO RAM FROM THE SIM I/O BUFFER
166
     CA+6 DEFINES THE RAM ADDRESS TO LOAD TO
167
     CA+8 (NOT SHOWN) IS THE START OF THE SIM I/O BUFFER
169
     NOTE: CA+2 AND CA+4 ARE DNE WORD LONG BUT NOT STORED AS Z80 WORDS.
163
        THE ZBO EXPECTS WORD VALUES TO BE STORED LSB/MSB.
170
171 DESC_2
172
      MEND
173
174
```

INCLUDE equate file name

217 ;

218

PAGE 5

LD

J۶

[HL]

269

0040 E3

```
LOCATION DBJECT CODE LINE
                               SOURCE LINE
                       220
                                  PROG
                       221
                                  GLB
                                          TAPE_MANAGER
                       222
                      223
                                  GLB
                                          INITIALIZE TAPE
    0000
                      224 INITIALIZE_TAPE:
                      225
                                  GLB
                                          INIT_TAPE
    0000
                      226 INIT_TAPE:
    0000 3800
                      227
                                    LD
                                            A.D
                                                                             CLEAR THE HP64000 AREA
    0002 327400
                      223
                                    LO
                                            CCAJ,A
    0005 320000
                      229
                                    LD
                                            ECSAJ.A
                                                                             SAND THE TAPE CONTROL STATUS AREA
    0008 30
                      230
                                    DEC
    0009 320000
                      231
                                    LD
                                            EDVERLAY_NUMBER], A
                                                                             :MAKE THE OVERLAY NUMBER -1 (INVALID)
    000C
                      232
                                    NEXT_STATE 0
                                                                             SET THE IDLE STATE!
    000C 3E00
                                    LD
                                           A, D
                                                                           SDMETHING IN THE COMMAND BUFFER!
    000E 320000
                                    LD
                                           CTAPE STATEJ.A
    0011 2ADD41
                                    LD
                                            HL.ESTATE_VECTORS+0+01
    0014 220000
                                    ŁD
                                            ENEXT_STATE_ADDRESS].HL
    0017 C3016A
                        ٠
                                    JP
                                            END_OF_STATE_MACHINE
    0014 C9
                       233
                                    RET
                      234
    0018
                      235 TAPE_MANAGER:
                      236 : BEGIN
                                           (Ordinarily registers are restored; retain only the pushes and pops you need.)
                       237
    001B 3A7400
                       238
                                    L D
                                           A.ECAJ
                                                                             :TEST THE STATUS OF THE FILE
    001E B7
                       237
                                    ÜR
    001F FA016A
                       240
                                    JΡ
                                            M. END_OF_STATE_MACHINE
                                                                             IIF THERE IS A COMMAND IN THE BUFFER
    0022 2805
                       241
                                    JR
                                            Z,AB_REQ
    0024 FE01
                       242
                                    CP
                                                                             :END OF FILE ON READ FROM HP64000
    0026 C2016C
                       243
                                    JP
                                            NZ.ERROR
                       244 *
                       245 $
                                    AT THIS POINT ANY SIM I/O FUNCTIONS ARE COMPLETE: TEST FOR ABORTS (XILLS)
                       246 #
                       247
                                    GLB
                                            AB REQ
    0029 340000
                       248 AB_REQ:
                                    LD
                                            A. CCSAI
                                                                              :IF COMMAND IS TO KILL TAPE COMMAND
    002C FE00
                       249
                                    CP
                                            KILL_TAPE
    002E 200D
                       250
                                    JR
                                            NZ,CASE_STATE
    0030 3A0000
                       251
                                    L D
                                            A, CTAPE_STATE]
                                                                             CHECK THE STATE OF THE TAPE
                      252 $
    0033 FE03
                      253
                                    CP
                                                                             :STATE 0,1,2
    0035 DA013D
                      254
                                    JP
                                            C.STATE_PRE_IDLE
                                                                             FILE NOT OPENED
                      255 $
   0038 FE06
                      256
                                    CP
                                                                             :STATE 3.4.5
    003A 0A012A
                      257
                                    JΡ
                                           C.STATE_CLOSE
                                                                             :FILE OPENED TRY TO CLOSE IT
                      258 ₩
                      259 $
                                           FALL THRU TO CASE STATEMENT
                                                                             IIF STATE = 6.7
                      260 €
                                                                             FILE IS TRYING TO CLOSE
                      261 3
                      262 $
                      263 $
                                           TAPE_STATE, CIDLE, RENAME, OPEN, READ1, READ2, MOVE2 VRAM, CLOSE, PRE_IDLE)
                                    CASE
                      264 $
    0030
                      265 CASE_STATE:
                      265 $
                      267 $
    003D 2A0000
                       268
```

HL. ENEXT_STATE_ADDRESS3

FILE: TAPE_MANA:TOS

```
LOCATION DBJECT CODE LINE
                               SOURCE LINE
    0043 0068
                       272
                                     DEFW
                                            STATE_RENAME
                                                                                      1
    0045 00A2
                       273
                                     DEFM
                                            STATE DPEN
                                                                                      2
    0047 0002
                       274
                                     DEF⊯
                                            STATE_READ_1
                                                                                      3
    0049 00DA
                       275
                                            STATE READ 2
                                     DEFW
    0048 00F2
                       276
                                     DEFW
                                            STATE_MOVE2RAM
                                                                                      5
                       277
    0040 012A
                                     DEFW
                                            STATE CLOSE
                                                                                      6
    004F 013D
                       278
                                     DEFW
                                            STATE_PRE_IDLE
                                                                                      7
    0051 0154
                       279
                                     DEFW
                                            WRITE_1
                       280 ₽
                       281 *
                                     IF THE MACHINE IS IDLE IT'S DK TO TEST FOR ANOTHER READ REQUEST
                       282 #
    0053
                       283 STATE_IDLE:
                                                                               STATE O
    0053 3A0000
                       284
                                     1 D
                                            A, ECSA]
                                                                              THEST THE COMMAND STATUS AREA
    0056 B7
                       285
                                     OR
    0057 CA016A
                       286
                                     JР
                                            Z.END_OF_STATE_MACHINE
                       287 *
    005A
                       288
                                     NEXT_STATE 1
    005A 3E01
                                     LO
                                            4.1
                                                                            SOMETHING IN THE COMMAND SUFFER!
    0050 320000
                                     LD
                                            CTAPE STATEL.A
    005F 2A0043
                                     L D
                                            HL.ESTATE VECTORS+1+1]
    0062 220000
                                     L B
                                            ENEXT_STATE_ADDRESS].HL
    0065 C3016A
                                     JP
                                            END_JF_STATE_MACHINE
                       289 *
                       290 *
                                     ASSIGN THE SIM I/O FILE TO THE CURRENT OVERLAY NAME
                       291 #
    0068
                       292 STATE RENAME:
                                                                              STATE 1
    0068 3A0000
                       293
                                    LD
                                            A, COVERLAY_NUMBER]
    0068 210187
                       294
                                     LD
                                            HL.SAMPLE NAME
    006E 117401
                       295
                                     LD
                                            DE . RNAM_BUF
                                                                              POINT TO THE RENAME BUFFER IN THE COMMON ATTRIBUTES AREA
    0071 010004
                       296
                                     LD
                                            BC, SAMPLE_NAME_LEN
                                                                              IND NAME COULD BE MORE THAN TEN BYTES COLD IT?
    0074 EDB0
                       291
                                    LDIR
                                                                              :MOVE THE OVERLAY DATA TO THE RENAME BUFFER
                       298 *
                       299 *
                       300 ₽
    0076 010A30
                       301
                                            BC.10 #256+ #0 #
                                     LO
                                                                              GGET THE DVERLAY NUMBER INTO ASCII
    0079
                       302 0V_2_ASCII_1:
    0079 B7
                       303
                                     DR
                                            Α
    007A 98
                       304
                                     SBC
                                            A . 8
                                                                              DIVIDE OVERLAY NUMBER BY 10
    007B 0C
                       305
                                     INC
                                                                              SET THE NUMBER OF TENS IN C (DOEN'T RESET CARRY)
    007C 30FB
                       306
                                     JR
                                            NC.OV_2_ASCII_1
                                                                              CARRY WAS SET BY SUBTRACT IF BOA
    007E 0D
                       307
                                     DEC
                                                                              SAVE THE TENS BYTE
    007F 80
                       308
                                     ADD
                                            A,B
                                                                              LADD TEN TO GET THE REMAINDER
    0080 0630
                       309
                                     LD
                                            8, "0"
                                                                              ISAVE THE DNES BYTE
    0082 80
                       310
                                     ADD
                                            A . B
    0083 47
                       311
                                     LD
                                            B . 4
    0084 79
                       312
                                     LO
                                            A.C.
    0085 FE30
                       313
                                     CP
                                            = C ×
                                                                              CONVERT TO ASCII
    0087 2002
                       314
                                     ٦¥
                                            NZ.OV_2_ASCII_2
    0089 3ESF
                       315
                                     LD
                                            4, "_"
                                                                              SPECIAL CASE
    0088
                       316 OV_2_ASCII_2:
    008B 12
                       317
                                     LΟ
                                            COE3.A
                                                                              THE IS POINTING TO THE FILENAME FROM THE LOIR ABOVE
    0086 13
                       318
                                     INC
                                            ЭE
    008D 73
                       319
                                     LD
                                            4,3
    008E 12
                       320
                                     LD
                                            [DE].A
                       321 ≉
                       322 ×
                                     ASSIGN THE FILE
                       323 #
```

00E9 ZA0043

LC

```
LOCATION OBJECT CODE LINE
                               SOURCE LINE
    DORE 3E84
                       324
                                    L D
                                            A . RENAME
    0031 327400
                       325
                                    LD
                                            ECAJ.A
                       326 *
                      327
    0094
                                    NEXT STATE 2
                                                                              :NEXT DPEN
    0094 3E02
                        +
                                    LD
                                            A . 2
                                                                            SOMETHING IN THE COMMAND SUFFER!
    0096 320000
                                    LΟ
                                            CTAPE_STATE3.A
    0099 ZA0045
                                    ŁD
                                            HL. CSTATE_VECTORS+2+2]
    0096 220000
                                    LD
                                            ENEXT STATE ADDRESSI.HL
    009F C3016A
                        •
                                    JP
                                            END_OF_STATE_MACHINE
                      328 2
                      329 *
   0042
                      330 STATE_OPEN:
                                                                              :STATE 2
                      331 *
                      332 *
                                    OPEN THE FILE
                      333 $
   00A2 3E04
                      334
                                    LD
                                            A.48SOLUTE
                                                                              :LOAD THE FILE TYPE
   0044 327401
                      335
                                    LD
                                            CFILETYPE3.A
   00A7 3E00
                      336
                                    LD.
                                            A . D
                                                                              ;DISK NUMBER
   0049 327402
                      337
                                    L D
                                            CDISC NUMB.A
   DOAC 3E81
                      338
                                    1.0
                                            A.JPEN
                                                                              COPNE THE CURRENT FILE
   DOAE 327400
                      337
                                    ŁD
                                            [CA].A
   0081 3A0000
                      340
                                    LD
                                            EAZJJ.A
                                                                              INEXT STATE READ OR WRITE?
   0084
                      341
                                    NEXT_STATE 3
                                                                              :NEXT STATE = READ 1
   0084 3E03
                                           A,3
                                    LD
                                                                            SOMETHING IN THE COMMAND BUFFER!
   0036 320000
                                    LD
                                           ETAPE_STATE3.A
   0039 ZA0047
                                    Ł0
                                            HL, CSTATE_VECTORS+3+33
   003C 220000
                                    LD
                                            CNEXT_STATE_ADDRESS1,HL
   DOBF C3016A
                                    JP
                                            END_OF_STATE_MACHINE
   0002
                       342 STATE_READ_1:
                                                                              :STATE 3
                      343 $
                       344 $
                                    READ THE FIRST RECORD TO SKIP OVER IT
                       345 ₽
    0002 3880
                       345
                                    LD
                                            A. MAXBUFLN
                                                                              SET THE INPUT BUFFER LENGTH
    0004 327401
                      347
                                            CBUF_LENJ.A
                                    ŁD
   00C7 3E87
                       348
                                    LD
                                            A.READ
    0009 327400
                       349
                                    LJ
                                            CCAJ,A
                                                                              READ THE FIRST RECORD
                       350
   00CC
                       351
                                    NEXT_STATE 4
    000C 3E04
                                    LD
                                            A . 4
                                                                            SOMETHING IN THE COMMAND BUFFER!
    00CE 32000D
                                    ΓD
                                            CTAPE_STATE3.A
    00J1 2A0049
                                    LD
                                            HL.ESTATE VECTORS+4+4]
    00004 220000
                                    LD
                                            ENEXT_STATE_ADDRESSJ.HL
    00J7 C3016A
                                    JР
                                            END_DF_STATE_MACHINE
                       352
                      353 ₽
                       354 *
                                    READ REMAINING RECORDS AND MOVE TO RAM
                       355 ₽
    DODA
                       356 STATE_READ_2:
                                                                              STATE 4
    0004 3EB0
                      357
                                            A, MAXBUFLN
                                    LO
                                                                              SET THE INPUT BUFFER LENGTH
    0000 327401
                       358
                                    LD
                                            CBUF_LENJ, A
    000F 3EB7
                      359
                                    LD
                                            A, READ
    00E1 327400
                       360
                                    L O
                                            [[A],A
                       361
                                                                              INEXT STATE = READ A DATA RECORD
    00E4
                       362
                                    NEXT_STATE 5
    00E4 3E05
                        ٠
                                    LO
                                           A , 5
                                                                            SOMETHING IN THE COMMAND BUFFER!
    0066 320000
                                    La
                                            ETAPE STATES.A
```

HL . ESTATE __ VECTORS+5+51

013A C3016A

٠

401 ¢

JΡ

END_OF_STATE_MACHINE

```
LOCATION OBJECT CODE LINE
                               SDURCE LINE
    00EC 220000
                                     LD
                                            ENEXT_STATE ADDRESS J. HL
    DOEF C30164
                                     JP
                                            END_DF_STATE_MACHINE
                       363
                       364 2
                       365 *
                                     MOVE THE LAST BUFFER TO RAM
                       365 ₽
    00F2
                       367 STATE_MOVEZRAM:
                                                                              STATE 5
    00F2 3A7400
                       368
                                     L D
                                            A.CCAJ
                                                                              CHECK THE RETURN STATUS
    00F5 B7
                       363
                                     D₹
                                            4
    00F6 280E
                       370
                                     JR
                                            Z,ND_EDF
                                                                              ; END OF FILE?
                       371 #
                       372 $
                       373
                                                                              :NEXT STATE = CLOSE FILE
    00F8
                       374
                                     NEXT_STATE 6
    00F8 3E06
                                     LD
                                            A . 6
                                                                            SDMETHING IN THE COMMAND BUFFER!
    00FA 320000
                         ٠
                                     LD
                                            CTAPE STATEL.A
    00FD 2A004D
                                     1. D
                                            HL, CSTATE VECTORS+6+61
    0100 220000
                                     LD
                                            ENEXT_STATE_ADDRESS1.HL
    0103 C3016A
                                     JP
                                            END_DF_STATE_MACHINE
                       375 NO_EOF:
    0106
                                                                              IMOVE THE CURRENT OVERLAY TO MEMORY
    0106 2A7402
                       375
                                     LD
                                            HL, CREC_LENJ
                                                                              GGET THE NUMBER OF BYTES TO MOVE TO RAM
    0109 40
                       377
                                     LD
                                            C,H
    010A 45
                       378
                                     LD
                                            B . L
                       379 ₺
    0108 247404
                       380
                                     LD
                                            HL.CLDADADDRJ
                                                                              IGET THE LOAD ADDRESS AND CHECK TO SEE IF IT IS IN VRAM
    010E 55
                       381
                                     LD
                                            D,L
    010F 5C
                       382
                                     LD
                                            E , H
    0110 217408
                       383
                                     L D
                                            HL.BUFFER
                                                                              :FROM ADDRESS
                       384
    0113 340000
                       385
                                     LD
                                            A.CCSA1
    0116 FE00
                                     CP
                       386
                                            WRITE_TAPE
    0118 283A
                       387
                                     J₽
                                            I. WRITE_1
                       383
    DIIA EDBO
                       389
                                     LDIR
                       390 $
                       391
                                                                              :NEXT STATE = READ A DATA RECORD
    011C
                       392
                                     NEXT_STATE 4
    011C 3E04
                                     LD
                                            A . 4
                                                                            SOMETHING IN THE COMMAND BUFFER!
    011E 320000
                                            CTAPE_STATED.A
                                     LD
    0121 2A0049
                         +
                                     LD
                                            HL, ESTATE_VECTORS+4+4]
    0124 220000
                                     LD
                                            ENEXT_STATE_ADDRESSJ.HL
    0127 C3016A
                                     JP
                                            END_DF_STATE_MACHINE
                       393 ≉
                       394 2
                                     CLOSE OVERLAY FILE
                       395 $
    012A
                       396 STATE CLOSE:
                                                                              :STATE 6
    012A 3582
                       397
                                     LD
                                            4,CLOSE
                                                                              :CLOSE THE FILES
    0120 327400
                       398
                                     LD
                                            CCA1.A
                       399
                                                                              :NEXT STATE = PRE-IDLE
    012F
                       400
                                     NEXT_STATE 7
    012F 3507
                         +
                                     ŁD
                                            4,7
                                                                            SOMETHING IN THE COMMAND BUFFER!
    0131 320000
                                     LD
                                            CTAPE_STATE3,A
    0134 2AQQ4F
                                     £ D
                                            HL, ESTATE_VECTORS+7+71
    0137 220000
                                            CNEXT_STATE_ADDRESS1, HL
                                     LЭ
```

0183 220000

443

LD

INEXT_STATE_ADDRESS J. HL

```
SOURCE LINE
LOCATION DBJECT CODE LINE
                    403 2
                                 NEXT STATE IS IDLE
                    404 $
                    405 STATE_PRE_IDLE:
                                                                      STATE 7
   0130
   0130 3500
                    406
                                 LO
                                       4,0
                                                                      INEXT STATE = PRE-IDLE
   013F 320000
                    407
                                 1.0
                                       CCSA1,A
                                                                      ICLEAR THE COMMAND STATUS BUFFER
                    409
                                 DEC
   0142 30
   0143 320000
                    409
                                 L D
                                       COVERLAY_NUMBER 3.A
                                                                      SET THE OVERLAY NUMBER TO OUT OF RANGE
                                 NEXT_STATE 0
   0146
                    410
                                 LD
                                                                    SOMETHING IN THE COMMAND BUFFER!
   0146 3800
                                       A . 0
                                       ETAPE_STATEJ.A
   0148 320000
                                 LD
   014B 2A0041
                                LO
                                       HL, CSTATE_ YECTORS+0+03
   014E 220000
                                 LD
                                       ENEXT_STATE_ADDRESS],HL
   0151 C3016A
                                 JP
                                       END_DF_STATE_MACHINE
                    411 0
                                       WRITE DUT 250 DATA BYTES TO AN OVERLAY! OH BOY!
                    412 #
                    413 2
                    414 WRITE_1:
   0154
                                                                      :GET HERE FROM MOVEZRAM!
   0154 EB
                                 EX DE.HL
                    415
                                LDIR
   0155 EDB0
                    416
   0157 3589
                    417
                                 LD A. WRITE
   0159 327400
                    418
                                LD CCAI,A
   D15C
                    419
                                 NEXT_STATE 6
   015C 3E06
                                ιo
                                       A . 6
                                                                    :SOMETHING IN THE COMMAND SUFFER!
   015E 320000
                                LD
                                       CTAPE_STATED.A
   0161 2A004D
                                LD
                                       HL.CSTATE_VECTORS+6+63
   0164 220000
                                LD
                                       ENEXT_STATE_ADDRESS],HL
   0167 C3016A
                                 JР
                                       END_DF_STATE_MACHINE
                    420 B
                    421 *
                    422 $
                    423
                    424 : END (TAPE_MANAGER)
                    425
                    426 END_OF_STATE_MACHINE:
   016A
   015A AF
                    427
                               XDR A
   016B C9
                    428
                               RET
                    016C
                    431 ERROR:
                    432 : BEGIN
                                      (Ordinarily registers are restored; retain only the pushes and pops you need.)
                    433
   016C 4F
                    434
                               LO C.A
                                                                      SAVE THE OVERLAY NUMBER IN A
   015D 3A0000
                    435
                               LD A. COVERLAY_NUMBER3
   0170 47
                    436
                               LD B.A
   0171 3A0000
                    437
                               LD A, CTAPE_STATED
                                                                      IB HAS THE FUNCTION CODE
   0174 210000
                     438
                               LD HL.O
   0177 77
                               LD [HL],A
                                                                      :C HAS THE ERROR CODE
                     439
                     440 :
                            LD [ML] HAS JUST CAUSED A BINK TO DECUR ON THE HP64000
                     441 :
                            THIS IS TO LET THE USER KNOW THERE HAS BEEN AN ERROR
                     442 :
                     443 :
    0178 AF
                     444
                               XOR
                                      ECALA
                                                                      ICLEAR THE ERROR FROM THE HP54000
    0179 327400
                     445
                               LD
                                                                      PRETEND THE ERROR WAS A CRC CHECK FROM ADAMS TAPE
    0170 30
                     446
                               INC
    0170 320000
                     447
                               LD
                                       CCSAJ,A
    0180 240041
                     448
                               LD
                                       HL, ESTATE_VECTORS+0000J
```

```
LOCATION OBJECT CODE LINE
                  SOURCE LINE
  0186 C9
               450
                       RET
               451
               452 : END (TAPE_ERR)
               453
               456 :
               457 :
                    DVERLAY NAMES
               458 :
               459 :
               460 :
                        :LENGTH :FILENAME ----> : USER ID
               461 :
                        :BYTE :UP TO 9 BYTES : UP TO 5 BYTES :
               462 :
               463 :
                       LENGTH BYTE := (((((LENGTH OF FILE NAME)+1)/2)-1)#32) + ((LENGTH DF USER ID)/2)#8)
               464 :
                       FILENAME MUST BE ODD NUMBER OF BYTES LONG MAY BE PADDED WITH ONE SPACE.
                        USER ID MUST BE EVEN NUMBER DE BYTES LONG MAY BE PADDED WITH DNE SPACE.
               465 :
               466 :
               469 $
               470 ⇒ DYERLAY NAME O
               471 =
  0187
               472 SAMPLE NAME
  0187 40
               473 DVLATO DEFB FL_NM_LND&32+US_ID_LND&8
                                                   :LENGTH DESCRIPTION BYTE
  0188 4F564C5F31 474 NAM 0 ASCII "OVL 1"
                                                   :MUST BE ODD NUMBER OF LETTERS
               475 USIDO
                        ASCII WM
                                                   :MUST BE EVEN NUMBER OF LETTERS
         <00002> 476 FL NM_LND EQU ((USIDO-NAM_0+1)/2)-1
                                                   LENGTH OF FILENAME IN WORDS
         <00000>
              477 US ID_LNO EQU ($-USIDO)/2
                                                   LENGTH OF USER ID IN WORDS
               478 SAMPLE_NAME_LEN EQU $-SAMPLE_NAME-2
                                                   :NUMBER OF BYTES TO MOVE = 2
         <0004>
               480 DATA
               481 GLB NEXT_STATE_ADDRESS
               482 NEXT STATE ADDRESS DEFS 2
                                                 :POINTER TO NEXT ENTRY STATE
   0000
               483 DEVICE ID
                                                   :DEVICE INDEPENDENCE SIMULATED
   0002
                               DEFS 1
```

```
FILE: TA
           MANA: TOS
                         CROSS REFERENCE TABLE
                                                         PAGE 12
                      TYPE
LINE#
        SYMBOL
                               REFERENCES
  209
      ASSOLUTE
                           334
                           241.247
  248 A8 REQ
                           393
  204 BUFFER
                        Δ
  200 BUF_LEN
                        Δ
                           347.358
 199 CA
                          200,201,203,204,205,206,228,238,325,339,349,360,368,338,418,445
  265 CASE STATE
                        P
                           250
                        Α
                           397
  211 CLOSE
  191 CSA
                        E
                           229,248,284,340,385,407,447
 483 DEVICE ID
                        D
                           176
                           337
  202 DISC_NUM
  426 END_DF_STATE_MA
                        Р
                          181,240,286
      ERRDR
                           243
  4 3 1
                           202.335
  201 FILETYPE
  476 FL_NM_LNO
                          473
                           223
  224 INITIALIZE TAPE
      INIT_TAPE
                           225
  226
  189
      KILL_TAPE
                        ŧ
                          249
  206
      LOADADDR
                        A
                           380
                        A
  208
      MAXBUFEN
                           346.357
                           476
  474
      NAM_0
      NEXT_STATE_ADDR
  482
                           180,268,449,481
      NO EDF
                        P
                           370
  375
       OPEN
                        A
                           338
  210
  193
      OVERLAY_NUMBER
                        Ε
                           231,293,409,435
  473
                        P
      OVLAYO
  302 0V_Z_ASCII_1
                        Р
                           306
  314
  212 READ
                           348,359
  203 REC_LEN
                        Δ
                           376
  214
      RENAME
                        Δ
                           324
  205 RNAM_BUF
                           295
                           294.478
  472 SAMPLE NAME
  473
      SAMPLE_NAME_LEN
                        A
                           296
                           257.277
  396
      STATE_CLOSE
  283 STATE_IDLE
                           271
  367
      STATE_MOVE2RAM
                        Р
                           276
  330 STATE_OPEN
                           273
  405 STATE PRE IDLE
                           254,278
  342
      L_CABR_BTATE_
                        Р
                           274
  356 STATE_READ_2
                           275
  292
     STATE_RENAME
                           272
  270 STATE_VECTORS
                          179.448
  235
      TAPE_MANAGER
                          221
                        E 178,251,437
  192
      TAPE_STATE
  475
      CCIZU
                           476.477
  477
      US_ID_LNO
                        A
                          473
  213
      WRITE
                           417
  414
                        Р
                           279,387
       WRITE_1
  190 WRITE_TAPE
                           386
```

9

TA PE

INTERFACE

PAGE 1

Tue, 15 May 1984, 20:30

```
FILE: TAPE_INTE:TOS
                        HEWLETT-PACKARD: TAPE_INTERFACE (c) Coleco 1983 Confidential
LOCATION OBJECT CODE LINE
                             SOURCE LINE
                       1 -780-
                       3
                          NAME TROV DZ - GPBA
                       5 De_TAPE_INTERFACE MACRO
                                                              :Header Rev. 5
                                         .GOTO Ede_TAPE_INTERFACE
                       7
                       8
                          Project:
                                        TAPE. C101
                       9
                          ************
                      10
                      11
                      12
                          * TAPE_INTERFACE
                                                 DIT
                      13
                          *****************
                      14
                      15
                      16
                                Rev History
                      17
                                Rev.
                                      Date
                                                   Name
                      18
                                               GPB
                                      11/2/83
                                                         CHANGED RANGE TO RANGE_ ( duplicate symbol problem)
                      19
                                      9/13/83
                                               DIT
                                                         CHANGED TO ALLOW ERROR RETIRES
                      20
                                      7/5/83
                                               DTT
                                                         Initial Pseudo code
                      21
                      22
                          Function:
                      23
                                  REQUEST READS AND WRITES AS DEFINED IN DCB.
                      24
                                  REQUESTS ABORT TAPE.
                      25
                                  TEST STATUS OF TAPE REQUEST.
                      25
                      27
                      28 Ede_TAPE_INTERFACE MEND
                      29 Pseudo_code_TAPE_INTERFACE
                                                       MACRO :Pseudocode macro area
                                  BEGIN:
                      31
                                      STORE OVERLAY_NUMBER
                                      HL := POINTER TO OCB := OVERLAY_NUMBER+5 + OVERLAY_TABLE_POINTER
                      32
                      33
                                      MOVE DCB TO CSA
                      34
                                      IF WRITE THEN
                      35
                                          SEND WRITE_COMMAND
                      36
                                      ELSE
                      37
                                          SEND READ_COMMAND
                      38
                                      ENDIF
                      39
                                  END
                      40
                                            .GOTO Ep_TAPE_INTERFACE
                      41
                      42
                      43
                      44 Ep_TAPE_INTERFACE MEND
```

FILE: DO

```
33
          34 :Inputs/Outputs passed in registers
          35 : CALLED EVERY SOTH SECOND BY THE NMI
          35
          37
          39 TAPE1
<80008>
                             E QU
                                  08H
<1F00>
          39 READ_TAPE
                             FQU
                                  81 H
          40 WRITE TAPE
<0092>
                             EQU 82H
<0097>
          41 KILL_TAPE
                             EQU 87H
          42 INCLUDE P DCB EQU:EDS
           + :THESE OUR EQUATES THAT ARE USED BY THE EOS PROGRAMS TO REFEFERNCE
           + :PCB AND DCB INFORMATION
           . PCB EQUATES
<00000>
           + P_CDM_STAT
                                     EQU
                                             0
                                                      : THIS IS THE COMMAND/STATUS BYTE
<0001>
           + P_REL_ADDR
                                     EQU
                                                      : THIS IS THE RELOCATION ADDRESS
                                              1
<0001>
           + P_REL_ADDR_LO
                                     EQU
                                              P_REL_ADDR+0
< 0002>
           + P_REL_ADDR_HI
                                     EQU
                                             P REL ADDR+1
<0003>
           + P_NUM_DCBS
                                     EQU
                                             3
                                                      : THIS IS THE NUMBER OF DCBS DEFINED
<0004>
             P_SIZE
                                     E QU
                                             4
                                                      : THE NUMBER OF BYTES IN THE PC3
           . DCB EQUATES
<0000>
           + D_COM_STAT
                                    EQU
                                                     : THE COMMAND STATUS BYTE
< 0001>
           + D_BUF_ADR
                                    EQU
                                                     : ADDRESS OF THE DATA BUFFER
<0001>
           + D_BUF_ADR_LD
                                    EQU
                                            D_BUF_ADR+D
<0002>
           + D_BUF_ADR_HI
                                            D_BUF_ADR+1
                                    EQU
< 0003>
           + D_BUF_LEN
                                    EQU
                                                     : THE LENGTH OF THE DATA BUFFER
<0003>

    D_BUF_LEN_LO

                                            D_BUF_LEN+0
                                    EQU
< 0004>
           + D_SUF_LEN_HI
                                    EQU
                                            O_BUF_LEN+1
<0005>
           + D_SECT_NUM
                                    EQU
                                            5
                                                     : THE BLOCK DEVICE SECTOR NUMBER
<0009>
           + D_SEC_DEV_ID
                                    EQU
                                            9
                                                     : SECONDARY DEVICE ID
<000E>
           + D_RET_COUNT
                                    EQU
                                            14
                                                     ; THE NUMBER OF TIMES A COMMAND WILL
                                                      : BE RETRIED.
<0000E>
           + D_RET_COUNT_LO
                                             D_RET_COUNT+0
                                    EQU
< 000F>
           + D_RET_COUNT_HI
                                             D RET_COUNT+1
                                    EQU
                                                     : THE DEVICE ADDRESS (ID)
<0010>
                                            16
           D_DEV_ADDR
                                    FOU
                                            17
                                                     THE MAX LENGTH OF A DATA STRING
<0011>
           + J_MAX_MSG_LEN
                                    EQU
                                                      : FOR THE DEVICE
<0011>
           + D_MAX_MSG_LN_LD
                                    EQU
                                             D MAX MSG LEN+0
                                             D_MAX_MSG_LEN+1
<0012>
           D_MAX_MSG_LN_HI
                                    EQU
```

```
FILE: TA' INTE:TOS
                         HEWLETT-PACKARD: TAPE_INTERFACE (c) Coleco 1983 Confidential
                                                                                                  Tue, 15 May 1984, 20:30
LOCATION OBJECT CODE LINE
                              SOURCE LINE
                       92
                                  PRJG
                       93
                       94 :
                                  TEST FOR COMPLETION OF ID REQUEST
    0000
                       95 TEST TAPE
    0000 340002
                       96
                                 LD A. [CSA]
    0003 B7
                       97
                                 DR A
    0004 C30030
                       98
                                 JÞ
                                          EXIT TAPE
                       99 $
                      100 2
                      101 3
   0007
                      102 ABORT_TAPE
    0007 3E87
                      103
                                  LD
                                          A.KILL_TAPE
    0009 320002
                      104
                                  LD
                                          ECSA3.A
    000C C3003D
                      105
                                  J۶
                                          EXIT TAPE
                      106 $
                      107 =
                      108
    000F
                      109 CALC_DCB_ADDR:
    000F 3D
                      110
                                 DEC
                                                                          ADDR = OCB_TABLE(OV_NUM-1*5)
    0010 4F
                      111
                                 ŁD
                                         C.A
                                                                          IGET THE OVERLAY NUMBER IN C
    0011 0600
                      112
                                 LD
                                         8.0
    0013 2A0000
                      113
                                 LO
                                         HL, COCB_PTR1
                                                                          PRINTER TO THE OCB TABLE
    0016 09
                      114
                                 ADD
                                         HL.3C
                                                                          :OCB_ADDR = OVERLAY_NUM#5 + START_OF_TABLE
    0017 09
                      115
                                 ADD
                                         HL.BC
    0018 09
                                 ADD
                      116
                                         HL.BC
    0019 09
                      117
                                 ADD
                                         HL.BC
    001A 09
                      118
                                 ADD
                                         HL.BC
    001B C9
                      119
                                 RET
                      120 2
    001C
                      121 WRITE_OVERLAY:
    001C 37
                      122
                                 SCF
                                                                          SET CARRY FLAG IF WRITE INSTRUCTION!
    001D 1801
                      123
                                 J٦
                                         LD_1
                      124 $
                      125 *
    001F
                      126 LDAD_OVERLAY:
    001F B7
                      127
                                 OR
                                                                          RESET CARRY FLAG IF READ
                      128 $
                      129 $
    0020
                      130 LO_1:
                      131 : BEGIN
                                         {Ordinarily registers are restored; retain only the pushes and pops you need.}
                      132 *
                      133 2
                      134 #
   0020 320000
                      135
                                 LD
                                         COVERLAY_NUMBER3,A
                                                                          FOR DEBUGGING PURPOSES
                      136 7
                      137 $
   0023 F5
                      138
                                 PUSH
                                         AF +++++++++++++++++
   0024 CD000F
                      139
                                 CALL
                                         CALC_DC3_ADDR
   0027 F1
                      140
                                 PJP
                                         AF ----:
                                                                           :SAVE THE CARRY FLAG IF SET
                      141 ≎
    0028 3004
                      142
                                 ٦R
                                         NC.LOAD_BLOCKS
                      143
    002A
                      144 WRITE_BLOCKS:
    002A 3E82
                      145
                                  LD
```

#WRITE INSTRUCTIONS GO HERE

: READ INSTRUCTIONS GO HERE!

A-WRITE TAPE

A, READ_TAPE

BLOCK_IO

0020 1802

002E 3E81

0028

146

148

JR

LD

147 LCAD_BLOCKS:

PAGE 3

FILE: TAP	E_INTE:TOS	•	HEWLETT-PACKARD:	TAPE_INTERFACE	(c) Coleco	1983 Confidential	Tue, 15 May 1984, 20:30	PAGE	4
LOCATION	OBJECT CODE	LINE	SOURCE LINE	•					
0 0 3 0		149	SLOCK_ID:						
0030	110003	150	LD	DE .CSA+1	:	POINT TO THE CO	MMAND STATUS AREA		
0033	010005	151	LD	BC +5	:	NUMBER OF SYTES			
0036	ED80	152	LDIR		:	1 10 10 E	18 1161		
0038	110002	153	LD	DE.CSA	-				
0038	12	154	LD	CDEJ,4		SET THE COMMAND	IN THE CSA BUFFER		
003C	AF	155	XOR	A		V021 1772 V031114119	IN THE CON UNITER		
		156	GLB	EXIT_TAPE					
0030		157	EXIT_TAPE:	-					
0030	C 9	158	RET						
		159	******	*****	*****		**********		
		160	DATA						
0000		161	DVERLAY_NUMBER	DEFS 1					
0001		162	TAPE_STATE	DEFS 1					
0002		163	CSA	DEFS 6					
	<0003>	164	XFER_ADDR	EQU CSA+1					
	<0005>	165		EQU XFER_ADDR+2					
	<0007>	166	RANGE_	EQU BLOCK_NUM+Z	•				
Errors=	0								

FILE:	TAPE_INTE:TOS	C	ROSS REFERENCE TABLE	PAGE	5
LINE#	SYMBOL	TTPE	REFERENCES		
102	ABORT_TAPE	P	51		
143	BLOCK_ID	P	57,146		
165	BLOCK_NUM	ם	75,166		
109	CALC_OCB_ADDR		54,139		
163	CSA	Ο,	73,96,104,150,153,164		
157	EXIT_TAPE	P	98,105,156		
8.8	KILLTAPE	A	85,103		
147	LOAD_BLOCKS	P	56,142		
126	LOAD_OVERLAY	P	52		
130	LO_1	P	123		
68	DCB_PTR	E	113		
161	DVERLAT_NUMBER	D	71,135		
166	RANGE_	ס	76		
86	READ_TAPE	A	83,148		
162	TAPE_STATE	D	72		
95	TEST_TAPE	Ρ	50		
***	WRITE	u	34		
144	WRITE_BLOCKS	ρ	55		
121	WRITE_OVERLAY	P	53		
8 7	WRITE_TAPE	A	84,145		
164	XFER_ADDR	D	74,165		

DDP

MANAGER

(A)

```
MEWLETT-PACKARD: DDP_MANAGER (c) Coleco 1983 Confidential
FILE: DDP_MANAG:TOS
                             SOURCE LINE
LOCATION OBJECT CODE LINE
                       1 ~280^
                          NAME ARRY D1 - DTTA
                       5 De_DDP_MANAGER MACRO
                                                         :Header Rev. 5
                                        .GOTO Ede_DDP_MANAGER
                       6
                       7
                                       H132. V5
                       8
                          Project:
                       9
                          ***************
                      10
                      11
                                                  DTT
                          # JDP_MANAGER
                      12
                      13
                          ***************
                      14
                      15
                      16
                                Rev History
                                                            Change
                                                  Name
                      17
                                                        DEVICE_ID --> DEV_ID
                                              DTT
                      18
                                 1
                                                        Initial Pseudo code
                                              DIT
                                 0
                                      9/9/83
                      19
                      20
                      21 Function:
                      22
                               CONTROLS THE DIGITAL DATA PACK FOR READS AND WRITES SETUP BY TAPE_INTERFACE
                      23
                      24
                      25 Ede_DDP_MANAGER MEND
                                                   MACRO :Pseudocode macro area
                      26 Pseudo_code_DDP_MANAGER
                                            .GOTO Ep_DDP_MANAGER
                      27
                      28
                       29
                       30
                       31 Ep_DDP_MANAGER MEND
```

Tue, 15 May 1984, 20:29

PAGE 1

FILE: DDF	.NAG:TOS	HEWLETT-PACKARD: DDP_MANAGER	(c) Coleco 1983 Confidential
122.00		THE	(c) colect 1903 Confidential

Tue, 15 May 1984, 20:29 PAGE 3

LOCATION DBJECT CODE LIN	E SOURCE LINE			
<0013>	• D_DEV_TYPE	EQU	19	: THE DEVICE TYPE, BLOCKED OR CHARACTER
<0014>	+ D_STATUS_FLAGS +	EQU	20	; DEVICE DEPENDENT STATUS FLAGS
<0015>	• D_SIZE	€QU	21	: THE NUMBER OF BYTES IN THE DCB
	+ + + :DEVICE ID'S FOR THE +	KEYBOARD) _• PRINTER	• AND TAPE DRIVE
	+ KEYBOARD_ID	EQU	1	: KYBD ID
	+ PRINTER_ID	EQU	ž	PRINTER ID
	+ TAPE_ID	EQU	8	: TAPE DRIVE ID
<0002>	+ • ERROR_RETRY -	EQU	2	# MAX RETRYS ON ERRORS. READ_BLOCK AND WRITE_BLOCK
	+ MAX_DEV_ADDR +	EQU	15	; HIGEST POSSIBLE DEVICE ADDRESS ; ON NETWORK
	• :PCB COMMAND EQUATES •			
<0000>	PC3_IDLE	EQU	0	THIS IS AN IDLE STATE
<0001>	+ PCB_SYNC1	EQU	1	; SYNC BYTE 1
	+ PCB_SYNC1_ACK	E QU	PCB_SYN	
	+ + PCB_SYNC2	€QU	3	4 CANC DATE 3
	+ PCB_SYNCZ_ACK	EQU	Z PCB_SYN	; SYNC BYTE 2 CZ+ROH
	•			
	• PCB_SN4	EQU	3	SET NEW PCB ADDRESS
<0083>	+ PCB_SNA_ACK +	EQU	PCB_SNA	+ 80H
< 0 0 0 4 >	+ PCB_RESET	EQU	4	; RESET ALL NODES
•	+ PC3_RESET_ACK	EQU	PCB_RES	
	+ + PCB_HAIT	EQU	5	•
	+ PCB_WAIT_ACK	EQU	PCB_WAI	T+80H
	♦ ♦			
•	+ :DCB COMMAND EQUATES			
<0000>	•	E QU	00	;
	+ DC3_STATUS	E 3 N	01	REQUEST STATUS
	+ DC3_RESET	EQU	02	RESET NODE
	+ DCB_WR	EQU	03	#RITE DATA TO DEVICE
	◆ DCB_RD	EQU	04	READ DATA FROM DEVICE
	•			
	↑ ▲			
<fec0></fec0>	• INIT_PCB_ADDR	EQU	OFFCOH	: INITIAL ADDRESS OF THE PCB
	_ =	- 40	01 2 2 0 11	V INTITUE HOUNCESS OF THE FOO

<0011>

: THIS IS THE BIT THAT INDICATES THE : COMMAND HAS BEEN PRICESSED.

: THERE WAS NO DOB FOR THE DEVICE REQUESTED.

: THIS IS THE STATUS OF A COMMAND THAT COMPLETED WITH NO ERRORS

: INDICATES NO KEY READY

: DCB IS BUSY

: DCB IS IDLE

: INDICATES THE PRINTER IS BUSY

:DLS(8/28/83)

:DLS(8/30/83)

;DLS(8/30/83)

;DLS(8/31/83)

: END OF DATA STRING INDICATOR

98H : DEVICE TIMED OUT

BOH

8 C H

86H

03H

1

17

2 3 4 5 6

7 <0009> + SAD_FNUM_ERR EQU 9 <0000A> + EDF_ERR EQU 10 <000B> EQU + T00_3IG_ERR 11

<000C> + FULL DIR_ERR EQU 12 <000D> + FULL_TAPE_ERR €QU 13 + FILE_NM_ERR <000E> EQU 14 * RENAME_ERR <000F> EQU 15 <0010> + DELETE_ERR EQU 16

<0012> + CANT_SYNCE €QU 18 <0013> + CANT_SYNC2 EQU 19 <0014> + PRT_ERR EQU 20

+ RANGE_ERR

<0015> + RQ_TP_STAT_ERR EQU 21 <0016> DEVICE_DEPD_ERR 22

45 *EXTERNAL DATA AREAS USED:

46 EXT _START_RD_1_BLOCK 47 EXT _FIND_DC3 48 43 EXT _START_WR_1_BLOCK 50 EXT _END_RD_1_BLOCK 51

EQU

52 NEXT_STATE MACRO EP1 53 LO 4 , E P 1

54 LO ED_TAPE_STATE3.A

55 LD HL, [STATE_VECTORS+&P1+&P1] 56 LD ENEXT_STATE_ADDRESS1.HL 57 JP END_OF_STATE_MACHINE

MEND 58 59

:SOMETHING IN THE COMMAND BUFFER!

SOURCE LINE

FILE: DDF

NAG:TOS

LOCATION DBJECT CODE LINE

```
60
                    61
                    62
                              GLB
                                       DEV_I3
                    63
                              GLS
                                       INITIALIZE_DDP.INITIALIZE_TAPE.INIT_TAPE.INIT_DDP
0000
                    64 INITIALIZE DDP:
0000
                    65 INITIALIZE TAPE:
                    66 INIT_TAPE:
0000
                    67 INIT DOP:
0000
0000
                    68 INIT CODE:
0000 AF
                    63
                                XUR
                    70
                                LD
                                        CD_CSAJ.A
0001 320002
0004 320001
                    71
                                L D
                                        ED_TAPE_STATE], A
0007 30
                    72
                                DEC
0008 320000
                    73
                                LD
                                        ED_DVERLAY_NUMBERJ.A
000B 240012
                    74
                                        HL. [STATE_VECTORS+0000]
                                LD
                                                                          :IDLE STATE
000E 2200D2
                    75
                                L D
                                        ENEXT_STATE_ADDRESS],HL
0011 C7
                    76
                                RET
                    77 STATE_VECTORS:
0012
0012 001F
                                DEFW
                                        STATE_IDLE
                                                                          STATE 0
                    78
0014 0026
                    79
                                DEFW
                                        STATE_I
                                                                                    REQUEST I/O FOR 1 BLOCK
                                                                                 1
0016 0058
                    8.0
                                DEFW
                                        STATE 2
                                                                                 2 TEST FOR COMPLETE AND REQUEST STATUS
0018 0078
                    91
                                DEFM
                                        STATE_3
                                                                                 3 TEST STATUS
         <001A>
                    BZ LEN_INIT EQU $-INIT_CODE
                    93 2
                    84 9
                    85
001A
                    86
                                DEFS
                                       1BH-LEN_INIT
                                                         MAKE SURE THE MANAGER VECTOR IS AT THE SAME LOC AS THE S/IO_MANAGER
                    87
                    88
                    83
                              GLB
                                       DDP MANAGER
                    90
                              GLB
                                       TAPE_MANAGER
001B
                    91 TAPE_MANAGER:
0018
                    92 DDP_MANAGER:
                    93 ⇒ BEGIN
                                       {Ordinarily registers are restored; retain only the pushes and pops you need.}
                    94 =
                    95 $
                    96 2
                    97 2
                                        FALL THRU TO CASE STATEMENT
                                                                          :IF STATE = 6.7
                    98 $
                                                                          :FILE IS TRYING TO CLOSE
                    99 2
                   100 >
                   101 =
                                CASE
                                        D_TAPE_STATE, (IDLE, STATE_1, STATE_2, STATE_3, INIT_DDP)
                   102 ≎
0018
                   103 CASE_STATE:
                   104 2
                   105 *
0018 2A00D2
                                        HL. [NEXT_STATE_ADDRESS]
                   105
                                L D
001E E9
                   107
                                 JP
                                        [HL]
                   109 🌣
                                 IF THE MACHINE IS IDLE IT'S OK TO TEST FOR ANOTHER I/O REQUEST
                   109 ≎
                   110 =
                   111 STATE_IDLE:
001F
                                                                          STATE D
001F 3A0002
                                        A. [D_CSA]
                                                                    TEST THE COMMAND STATUS AREA
                   112
                                LD
0022 87
                   113
                                 08
                                                                    :IF THE CSA CONTAINS AN ERROR CODE DON'T PROCESS IT
0023 F200CF
                   114
                                 J۶
                                        P.END_OF_STATE_MACHINE
                   115 $
                   116 $
                                        FALL THROUGH TO STATE 1
```

```
117 =
0026
                   118 STATE_1:
0026 3A0002
                   119 48_REQ: LD
                                        A.ED_CSA3
                                                                            TIF COMMAND IS TO KILL DOP COMMAND
0029 FE87
                   120
                                CP
                                        KILL TAPE
0028 CA0000
                   121
                                JP
                                        Z.INIT_DDP
                   122 =
                  123 #
                                REQUEST TO WRITE/READ A RECORD
                  124 $
                  125
002E 240003
                  126
                                LD
                                     HL. CXFER_ADDR3
0031 ED580005
                  127
                                LD
                                     DE.EBLOCK_NUM3
0035 010000
                  129
                                     BC . 0000H
                                LD
0038 340002
                  129
                                LD
                                     A.ED_CSAI
003B FE81
                  130
                                CP
                                     READ TAPE
003D 3A00D1
                  131
                                Lΰ
                                     A.CDEV ID]
0040 2005
                  132
                                JR
                                     NZ+EOS_TAPE_WRITE
                  133 EDS_TAPE_READ:
0042
0042 CD0000
                  134
                                CALL _START_RD_1_BLOCK
0045 1803
                  135
                                JR RET_ADDR
0047
                  136 EUS_TAPE_WRITE:
0047 CD0000
                  137
                                CALL _START_WR_1_BLOCK
                  138
                  133
004A
                  140 RET_ADDR:
004A
                  141
                                NEXT_STATE 2
004A 3E02
                                LO
                                       A , 2
                                                                       #SOMETHING IN THE COMMAND BUFFER!
0046 320001
                                LD
                                        ED_TAPE_STATED, A
004F 240016
                                        HL.CSTATE_VECTORS+2+23
                                LD
0052 2200D2
                                LD
                                        [NEXT_STATE_ADDRESS], HL
0055 C300CF
                                JР
                                        BNJ_DF_STATE_MACHINE
                   142
                   143 #
                  144 #
                                        TEST FOR ACCEPTANCE/COMPETION OF I/O REQUEST
                   145 $
0058
                   146 STATE_2:
0058 3A00D1
                   147
                                LD
                                        A.CDEV.ID1
                                                                 THEST THE STATUS OF THE FILE
0058 CD0000
                   148
                                CALL
                                        _ENO_RD_1_BLDCK
005E D200CF
                   149
                                J۶
                                        NC.END_OF_STATE_MACHINE
                                                                            SETTER RETRY STATE 2
                   150 $
                                AT THIS POINT THE COMMAND HAS BEEN ACCEPTED BY THE NETWORK
                   151 >
                   152 $
                                IF THE ZERO FLAG IS NOT SET THERE HAVE BEEN ERRORS (09BH=TIMEDUT)
                   153 ₽
                  154
0051 2003
                                                                             :BETTER RETRY STATE 1
                   155
                                J٦
                                        NZ.STATE_1
                   156 *
                  157 2
                                IF NO ERRORS THEN SET UP REQUEST STATUS OF THE TAPE DRIVE
                  158 ⇒
                                THIS TESTS THE CHECK SUM (CRC) OF THE DATA XMITTED BY THE TAPE
                   153 $
0063
                   160 STATE_2_OK:
                  161 2
0063 340001
                  162
                                LD
                                     A, CDEV_ID3
                                                                            STATUS COMMAND
0056 000000
                                CALL _FIND_DCB
                  163
0059 FD360001
                                LD CIY+D_COM_STAT3,DCB_STATUS
                  164
0050
                                NEXT_STATE 3
                  165
006D 3E03
                                       A . 3
                                                                       ISOMETHING IN THE COMMAND SUFFER!
                    .
                                r 5
005F 320001
                    +
                                       ED_TAPE_STATE3,A
                                LΒ
0072 240018
                                LD
                                       HL. C$TATE_VECTORS+3+33
```

FILE: DDF INAG:TOS

220 \$

Possible errors are 1=CRC check (bad data on tape)

Errors=

0

```
SOURCE LINE
             221 $
                           2=block not found 3=no tage in drive 4=no drive
             222 $
                           The user program is expected to test for errors via
             223 *
                           TEST TAPE in the TAPE INTERFACE module.
             224 #
             225 $
0004 320002
             226
                      L D
                           A.CAZO OD
                                                  SAVE THE ERROR CODE IN THE CSA
                           HL, CSTATE VECTORS+01
00E9 2A0012
             227
                      LD
                                                  :NEXT STATE = IDLE
DDCC 2200D2
             228
                      L D
                           ENEXT_STATE_ADDRESSJ.HL
             229
             230
             231 # END (ODP_MANAGER)
DOCF
             233 END_OF_STATE_MACHINE:
DOCF AF
             234
                    XOR A
                     RFT
0000 C9
            235
             DEV ID IS DEFAULT ON FOR TAPE DRIVE O
                                                              ***
             239
             240
0001 08
             241 DEY_ID
                        DEFB TAPE1
             242
            243
             247
                     GLB D DVERLAY NUMBER
             248
                    GLB D TAPE STATE
             249
                    GLB D_CSA
             250 $-----
             251 #THE NEXT_STATE_ADDRESS MAY BE PUT IN DATA, PROG, OR COMM (IT'S ALL RAM TO ADAM)
0002
             253 NEXT_STATE_ADDRESS DEFS 2
             255 ⊅
                           BY MAKING THE CSA COMMON IT IS EASILY LINKED
             256 $
                           INTO EXISTING CODE
             257 DATA
0000
             258 D OVERLAY NUMBER DEFS 1
0001
             259 D_TAPE_STATE
                            DEFS 1
0002
             260 D_CSA
                            DEFS 6
      <0003>
             261 XFER_ADDR EQU D_CSA+1
      <0005>
             262 BLOCK_NUM EQU XFER ADDR+2
      <0007>
             263 RANGE EQU BLDCK_NUM+2
```

```
TYPE
                              REFERENCES
LINE#
     SYMBOL
 119 43_REQ
                       ρ
  43 BAD_FNUM_ERR
                       Δ
 262 BLOCK_NUM
                          127,199,209,263
                       D
  43 CANT_SYNC1
                       A
  43 CANT_SYNCZ
                       A
 103 CASE_STATE
  42 CMND_COMPLETE_B
                          172
  42 CMND_FIN_STATUS
  43 DCB_BUSY
  42 DCB_IDLE
     DCB_IDLE_ERR
  43
  43 DCB_NOT_FOUND
  42 DCB_RD
  42
      DCB_RESET
  42 DCB_STATUS
                          164
  42 DCB_WR
  92 DOP_MANAGER
                          89
     DELETE_ERR
  43
  43 DEVICE_DEPD_ERR
 192 DEV_O_CHECK
                          187
 241
      DEV_ID
                          62,131,147,162,170,184
  42 D_BUF_ADR
                          42,42
  42 D_BUF ADR HI
  42 D_BUF_ADR_LO
  42 D_BUF_LEN
                          42,42
  42 D_BUF_LEN_HI
  42 D_BUF_LEN_LD
  42 D_COM_STAT
                          164,172,177
  260 D_CSA
                          70,112,119,129,226,249,261
  42 D_DEV_ADDR
  42 D_DEV_TYPE
  42 D_MAX_MSG_LEN
                          42,42
  42 D_MAX_MSG_LN_HI
  42 D_MAX_MSG_LN_LD
  258 D_OVERLAY_NUMBE
                         73,247
  42 D_RET_COUNT
                          42,42
  42 D_RET_COUNT_HI
                       A
  42 D_RET_COUNT_LD
                       Д
  42 D_SECT_NUM
  42 D_SEC_DEV_ID
  42 D_SIZE
  42 D_STATUS_FLAGS
                         186
 259 D TAPE STATE
                       0 54,71,248
 233 END_OF_STATE_MA
                          57,114,149,173
  43
     EUF_ERR
 133 EUS_TAPE_READ
 136 ESS_TAPE_WRITE
                          132
 218 ERROR
                          194
  42
     ERROR_RETRY
  42 ETX
  43 FILE_EXISTS_ERR
  43 FILE_NM_ERR
  43 FULL_DIR_ERR
  43 FULL_TAPE_ERR
  64 INITIALIZE_DDP
                       P
                          63
     INITIAL[ZE_TAPE
                      Р
                          63
     INIT_CODE
                          82
```

```
TYPE
                              REFERENCES
LINE# SYMBOL
   67 INIT_DOP
                          63,121,203
   42 INIT_PCB_ADDR
                          63
   66 INIT_TAPE
   42 KBD_NAK
   42 KETBOARD_ID
                          120
   41 KILL TAPE
                          85
   82 LEN_INIT
   43 MATCH_ERR
   AZ MAX_DEV_ADDR
  253 NEXT_STATE_ADDR
                       P
                          55,75,106,228
   43 NO_DATE_ERR
   43 NO_FCB_ERR
   43 NO_FILE_ERR
   42 PCB_IDLE
   42 PC8_RESET
                          42
   42 PCB_RESET_ACK
                          42
   42 PCB_SNA
   42 PCB_SNA_ACK
                          42
   4Z PCB_SYNC1
   42 PCB_SYNC1_ACK
                          42
   42 PC8_SYNCZ
   42 PCB_SYNC2_ACK
                          42
   42 PCB_WAIT
   42 PCB_WAIT_ACK
   42 PRINTER_ID
   43 PRT_ERR
   42 PR_NAK
   42 P_COM_STAT
   42 P_NUM_DCBS
   42 P_REL_ADDR
                          42,42
   42 P_REL_ADDR_HI
   42 P_REL_ADDR_LD
   42 P_SIZE
  263 RANGE
                          201,207
   43 RANGE_ERR
   39 READ_TAPE
                          130
   43 RENAME_ERR
  140 RET_ADDR
                          135
   43 RQ_TP_STAT_ERR
                          79,155,213
  118 STATE_1
  146 STATE_2
                          80
  160 STATE_2_DK
                          179
                          81
  169 STATE_3
  111 STATE_IDLE
                          78
   77 STATE_VECTORS
                          55,74,227
   38 TAPE1
                          241
   42 TAPE ID
   91 TAPE_MANAGER
                          90
   42 TIMEDUT
   43 TOO_BIG_ERR
                       Α
   40 WRITE_TAPE
  261 XFER_ADOR
                         126,198,211,262
   50 _END_RO_1_BLOCK E 148
   48 _FIND_DCB
                       E 163,171
   47 _START_RD_1_BLO E 134
   49 _START_WR_1_BLO E 137
```

بسر

DD

P

INTERFACE

```
FILE: ODP_INTER:TOS
                        HEWLETT-PACKARD: DDP_INTERFACE (c) Coleco 1984 Confidential
                                                                                              Mon, 21 May 1984, 16135
                                                                                                                          PAGE 1
LOCATION OBJECT CODE LINE
                             SOURCE LINE
                       1 -280-
                         NAME AREV DE - DTTA
                         De_DOP_INTERFACE MACRO
                                                            :Header Rev. 5
                                         .GOTO Ede_DDP_INTERFACE
                          Project:
                                        TAPE, C101
                      10
                         ******************
                      11
                      12
                             DDP_INTERFACE
                                                DIT
                      13
                      14
                      15
                      16
                                Rev History
                      17
                                Rev. Date
                                                  Name
                      18
                                     9/13/83 DIT
                                                        CHANGED TO ALLOW ERROR RETIRES
                     19
                                 0
                                     7/5/83 011
                                                        Initial Pseudo code
                     20
                      21
                         Function:
                                 REQUEST READS AND WRITES AS DEFINED IN OCB.
                      22
                     23
                                 REQUESTS ABORT TAPE.
                     24
                                 TEST STATUS OF TAPE REQUEST.
                      25
                      27 Edo_DOP_INTERFACE MEND
                     28 Pseudo_code_DOP_INTERFACE
                                                     MACRO :Pseudocode macro area
                     29
                                 BEGIN:
                     30
                                     STORE D_OVERLAY_NUMBER
                                     HL := POINTER 70 DCB := D_OVERLAY_NUMBER+5 + DVERLAY_TABLE_POINTER
                     31
                     32
                                     HOVE DOB TO O_CSA
                     33
                                     IF WRITE THEN
                     34
                                         SEND WRITE COMMAND
                     35
                                     ELSE
                     36
                                         SEND READ_COMMAND
                     37
                                     ENDIF
                     38
                                 END
                     37
                                           .GOTO Ep_DDP_INTERFACE
                     40
                     41
                     42
                     43 Ep_DDP_INTERFACE MEND
```

```
FILE: ODP_INTER:TOS
                         MEWLETT-PACKARD: DDP_INTERFACE (c) Coleco 1984 Confidential
                                                                                                    Mon, 21 May 1934, 16:35
                                                                                                                                 PASE
LOCATION DEJECT CODE LINE
                               SOURCE LINE
                        45 (Subroutines called
                        45 :
                                   EXT
                        47
                        43 :Subroutines defined
                        49
                                   563
                                           TEST TAPE
                        50
                                   Ġ L B
                                           ABJRT_TAPE
                        51
                                   51.5
                                           LOAD CVERLAY
                        52
                                   GLS
                                           WRITE OVERLAY
                        53
                                   GLB
                                           CALC_DCB_ADDR
                        54
                                   GL B
                                           WRITE BLOCKS
                        55
                                   GL3
                                           LOAD_BLOCKS
                        56
                                   GL3
                                           BLOCK_ID
                       57 :
                                   GLB
                        58
                       59 :Operating system calls
                       60 :
                                   EXT
                        61
                        62 :Inputs/Dutputs bassed in registers
                       63 :
                                   A = IVERLAY NUMBER 1 thru N
                        64 :
                                   A <> 0 = ERROR
                        65
                        66 :External data areas used
                        67
                                           CC6_PTR
                                   EXT
                                                                             POINTER TO THE OVERLAY CONTROL TABLE
                        68
                       69 :Global data areas defined
                        70
                                   EXT D_GVERLAY_NUMBER
                        71
                                   EXT D_TAPE_STATE
                        72
                                   EXT D_CSA
                        73 :
                                   GL3
                        74
                        75 :Local equates
                        70 ;
                                   t Qu
                        7 7
                        73 (Global equates
                        79
                                      GLB READ TAPE
                        во
                                      GLB WRITE TAPE
                        81
                                      GLB KILL_TAPE
                       82 READ_TAPE EQU 81H
             <0081>
                       83 ARITE_TAPE EQU 82H
             < 20032 >
             <10087>
                        84 KILL_TAPE EQU 87H
                        85 :
                                  INCLUDE File_name:userid
                        96
```

FILE: DDP_	INTER:TOS	٠	EWLETT-PACKARD:	: DOP_INTERFACE	(c) Coleco 1984	Confidential	Mon, 21 May 1984, 16:35	PAGE	3
LOCATION O	BUECT CODE	LINE	SOURCE LINE	Ī					
		8 9	PROG						
		90	# TEST FO	OR COMPLETION OF	ID REQUEST				
0000		116	TEST_TAPE						
0000 3		92	LD A.CD.	CSAI					
0003 8		73	CR A						
0004 C	.30030	94	1 b	EXIT_TAPE					
		95							
		96							
0007		97 33							
0007	1 F Q 7	93	ABORT_TAPE	A KTIL TADE					
0009 3		100	FD	A,KILL_TAPÉ CD_CSA],A					
0000 0		101	JP	EXIT_TAPE					
*****		102		E. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
		103							
		134							
00 DF		105	: RDCA_630_31A3						
000F 3		105	0 5 C	A		:ADDR = OCB_TABLE(OV_	NUM-1#5)		
0010 4		107	L D	C • A		GET THE OVERLAY NUMB	SER IN C		
0011 0		109	L D	B, 0					
0013 2		109	LD	HL,CCCB_PTR3		POINTER TO THE OCB T			
0016 0 0017 0		110	OC A	HL,BC		:OC8_ADDR = DVERLAY_N	IUM#5 + START_DF_TABLE		
0018 0		111	00 A 0 G A	HL:30 HL:30					
0019 0		113	A DD	HL,BC					
001A 0		114	4 D O	HL,BC					
0013 C		115	₽ċ T						
		115							
0010		117	WRITE_OVERLAY:						
0016 3		118	SCF			ISET CARRY FLAG IF WR	ITE INSTRUCTION!		
0010 1	. 6 0 1	119	7.5	LO_1					
		120							
001F		121							
001F B	. 7	123	LDAD_OVERLAY:	A					
0011	• •	124		A		RESET CARRY FLAG IF	REAU		
		125							
0020			L3_1:						
			: BEGIN	(Ordinarily red	isters are restor	ed: retain only the n	ushes and pops you need.)		
		128		, -,		, p			
		127							
		130							
0020 3	320000	131	L O	ED_JVERLAY_NUMB	ER],A	FOR DESUGGING PURP	OSES		
		132							
0023 F	: c	133 134	₽ PJSH	45					
0024 6		135	CALL	Añ +++++++++	********				
0027 F		136	PJP	CALC_DC9_ADDR		SAVE THE CARRY FLAG	IE CET		
1		137			- •	TOATE INC LARRY PLAG	I SCI		
0028 3	3 O C 4	134	73	NC,LOAD_BLOCKS					
		13)	-						
A S 0 C			WRITE_BLOCKS:						
0024		1 4 1	LD.	A.WRITE_TAPE		*WRITE INSTRUCTIONS G	J HERE		
0020 1	1802	142	75	BLOCK_IJ					
00.25	1. 0.1		LCAD_8LCCKS:						
002E 3	2501	144	7 D	A.PEAJ_TAPE		READ INSTRUCTIONS GO	HERE!		

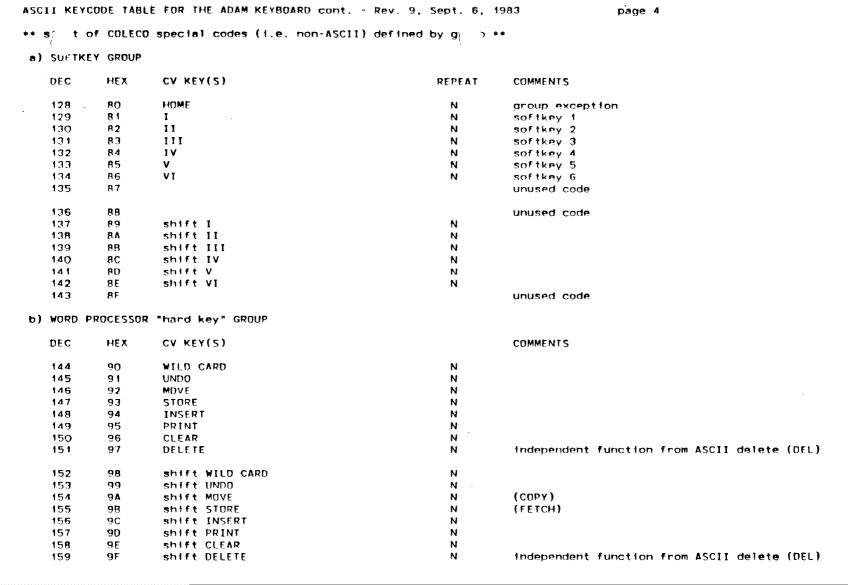
ILE: DOP_INTER:TO	2 HEML	ETT-PACKARU	: DDP_INTERFACE	(c) Coloco I	1984	Confidential	man. 21 f	4ay 1984,	16:3>	PASE	,
CATION OBJECT CO	DE LINE	SOURCE LIN	É								
0030	145 3LO	CK_10:									
2030 110001	146	L C	DE . D_CSA+1	;	:	POINT TO THE COMM	AND STATUS	AREA			
0033 010005	147	∟ 0	BC • 5	:		INUMBER OF BYTES TO	BVCM				
0036 EDB0	148	LDIR		;							
0038 110000	143	LD	DE D_CSA								
0038 12	150	LD	CDE 3.A			SET THE COMMAND IN	THE D_CSA BE	UFFER			
003C AF	151	XCR	A								
	152	GLB	EXIT_TAPE								
0030	153 EXI	T_TAPE:	-								
003D C9	154	RET									
	155 \$\$\$	****	*********	*********	****	******	*****	****	***		

The same state of the same sta

```
FILE: DOP_INTER:TOS CROSS REFERÊNCE TABLE
                                                   PAGE
LINE
      SYMBOL
                   TYPE REFERENCES
  98
     ABORT_YAPE
                     P 50
 145 BLOCK_ID
                     P 56,142
 105 CALC_CC6_ACOR
                     P 53,135
  72 D_CSA
                     E 92.100.146.149
  70 D DVERLAY NUMBE
                     Ε
                       131
  71 D_TAPE_STATE
 153 EXIT TAPE
                       94,101,152
                     4 81,99
  84 KILL TAPE
 143 LJAD_BLJCKS
                     P 55,138
 122 LOAD_DVERLAY
                     ρ
                       51
 126 LU 1
                     P 119
  67
      OCB_PTR
                       109
  82
     READ_TAPE
                     A 79.144
  91
     TEST TAPE
                       47
$3
     WR1TE
                        33
 140 WRITE_BLOCKS
                     P 54
 117 WRITE_OVERLAY
                       52
  83
      WRITE_TAPE
                        80,141
```

**** "EYCODES GENERATED BY ADAM COMPUTER KEYBOARD ****

Keyboard


Table

vcC	HEX	ASCII DATA	CV KEY(S)	REPEAT	COMMENTS
O	00	NUL	cntrl 2	N	Null (substitute for cntrl *)
1	01	SOH	cntrl A	N	Start of Heading
2	02	STX	cntrl B	N	Start of Text
3	03	ETX	cntr1 C	N	End of Text
4	04	EOT	cntr1 D	N	End of Transmission
5	05	ENO	cntrl E	N	Enquiry
6	06	ACK	cntr1 F	N	Acknowledge
7	07	BEL	cntr1 G	N	Bell
.8	OB	BS	cntrl H or BACKSPACE	Y	Backspace (see NOTE 5)
9	09	HT	cntrl I or TAB	N	Horizontal Tabulation (see NOTE 6)
10	OΛ	LF	cntrl J	N	Line Feed
1 1	08	VT	cntrl K	N	Ventical Tabulation
12	OC	FF	cntr1 L	N	Form Feed
13	OD	CR	cntr1 M or RETURN	N	Carriage Return
14	OE.	50	cntr1 N	N	Shift Out
15	OF	SI	cntr1 0	N	Shift In
16	10	DLE	cntr1 P	N	Data Link Escape
17	11	DC 1	cntr1 0	N	Device Control i
18	12	DC 2	cntr1 R	N	Device Control 2
19	13	DC3	cntr1 5	N	Device Control 3
20	14	DC4	cntri T	N	Device Control 4
21	15	NAK	cntrl U	N	Negative Acknowledge
22	16	SYN	cntrl V	N	Syncronous Idle
23	17	ETB	cntr1 W	N	End of Transmission Block
24	18	CAN	entr1 X	N	Catice1
25	19	EM	cntr1 Y	N	End of Medium
26	1Λ	SUB	cntr1 7	N	Substitute
27	1B	ESC	cntrl [or WP/ESCAPE	N	Escape
28	10	FS	cntr1 \	N	File Separator
29	10	G2	cntri]	N	Group Separator
30	1E	RS	cntr1 ^	N	Record Separator
31	1F	US	cntr1 6	N	Unit Separator (substitute for cntrl _) ·
32	20	SP	space ban	Y	Space
33	21	1	shift i	Y	Exclamation Point
34	22	•	shift •	Y	Quotation Marks (or double quotes)
35	23	/	shift 3	Y	Number Sign
36	24	\$	shift 4	Y	Dollar Sign
37	25	7.	shift 5	Y	Percent
38	26	R	shift 7	Y	Ampersand
39	27			Y	Apostrophe (or single quotes)
40	28	(shift 9	Y	Opening Parenthesis
41	29)	shift O	Y	Closing Parenthesis
47	21	•	shift 8	Y	Astenisk
43	28	+	4	Υ .	Plus
41	2C	•	•	Y	Comma
45	20	-	-	Y	Hyphen (Minus)
46	2 E	•	•	Y	Period (Decimal Point)
47	2F	/	/	Y	Slant

ASCII KEYCO	DE TABLE	FOR THE ADAM KE	YBOARD cont Rev. 9.	Sept. 6, 19	83	page 2
D .	HEX	ASCII DATA	CV KEY(S)	REPE	COMMENTS	
48	30	0	0	γ		
49	31	1	1	Y		
50	32	2	2	Ÿ		
51	33	3	3	Ý		
52	34	4	4	Ÿ		
53	35	5	5	Ý		
54	36	6	6	Ý		
55	37	7	7	Ÿ		
56	38	8	8	Y		
57	39	9	9	Y		
58	34	:	shift;	Y	Calon	
59	38	;	;	Y	Semicolon .	
60	3C	<	shift,	Y	Less Than	
61	3D	*	shift +	Y	Equals	
62	3E	>	shift .	Y	Greater Than	
63	3F	7	shift /	Y	Question Mark	
64	40		shift 2	Y	Commercial At	
65	41	Α	shift A	Y	upper case	
66	42	В	shift B	Y	n n	
67	43	С	shift C	Y	n	
68	44	D	shift D	Y	n n	
69	45	E	shift E	Y	H H	
70	46	F	shift F	Y	m n	
71	47	G	shift G	Y	H H	
72	48	н	shift H	Y	11 19	
73	49	1	shift I	Ÿ		
74	4 A	J	shift J	Ÿ	т п	
75	4B	Ř	shift K	Ÿ		
76	4C	Ĺ	shift L	Ÿ	е н	
7 7	4D	M	shift M	Ý	n 11	
78	4E	N	shift N	Ý		
79	4F	Ö	shift 0	Ÿ		
80	50	p	shift P	Υ	11 #1	
81	51	0	shift Q	Y	п п	
82	51 52	R	shift R	Y	н н	
83	53	5	shift S	Y	ır n	
84	53 54	5 †	shift T	Y		
85	55	U	shift U	Y	и н	
86	56 57	V	shift V	Y	н н	
87	57	W	shift W	Υ	,	
88	5 8	X	shift X	Y	N H	
-89	59	Y	shift Y	Y		
90	51	7	shift Z	Y	upper case	
91	58	Ĺ	Ţ	Y	Opening Bracke	t
92	5C	Y	<u>y</u>	Y	Reverse Slant	
93	5D	1	3	Y	Closing Bracke	t
94	5E	^	^	· Y	Circumflex	
95	5F		shift 6	Y	Under 1 fne	

page 3

1 2	HEX	ASCII DATA	CV KEY(S)	RE(/	COMMENTS
96	60	•	shift -	Y	Grave Accent
97	61	a	A	γ	lower case
98	62	ь	В	γ	H H
99	63	C	С	Y	н н
100	64	đ	D	Y	a
101	65	e	E	Y	H H
102	66	f	F	Y	н н
103	67	g	G	Y	P 0
104	68	h	н	Y	** **
105	69	1	I	Y	н п
106	6A	j	J	Υ	н н
107	6B	k	K	Y	11 11
108	6 C	1	L	Y	11 н
109	60	m	M	Y	н =
110	6 E	n	N	Y	н м
111	6F	0	0	Y	и е
112	70	Þ	Þ	Y	и и
113	71	q	Q	Y	* "
114	72	r	R	Y	н н
115	73	5	S	Y	** **
116	74	t	T	Y	И
117	75	u	U	Y	u tr
118	76	V	V	Y)) II
119	77	W	W	Y	10 11
120	78	×	X	Υ Υ	е и
121	79	У	Y	Υ	li in
122	7 A	Z	Z	Υ	lower case
123	7B	€	shift {	Y	Opening Brace
124	7C	1	shift \	Υ .	Vertical Line
125	7D	}	shift]	Y	Closing Brace
126	7 E	~	shift ^	Y	Tilde -
127	7 F	DEL	cntrl DELETE	Y	Delete (substitute for DEL)

•			
DEC	HEX	CA	KEY(S)

c) SOR CONTROL GROUP

DEC	HEX	CV KEY(S)	REPEAT	COMMENTS
160	AO	up arrow	Y	north
161	A 1	right arrow	Y	east
162	A2	down annow	Y	south
163	EA	left arrow	Y	west
164	A 4	cntrl up arrow	Y	
165	A5	cntr1 right arrow	Y	
166	A 6	cmtr1 down arrow	Y	
167	A 7	cntrl left arrow	Y	
168	AB	up arrow + right arrow	Y	northeast - sequence Independent, time critical
169	A9	right arrow + down arrow	Y	southeast - " " " " "
170	AA	down arrow + left arrow	Y	southwest - " " " " "
171	ΔB	left arrow + up arrow	Υ Υ	northwest - sequence independent, time critical
172	AC	HOME + up arrow	N	sequence independent, time critical
173	AD	HOME + right arrow	N	H H M H
174	ΑE	HOME + down arrow	N	н н н
175	AF	·HOME + left arrow	N	sequence independent, time critical
d) GENE	RAL KEY G	ROUP		
DEC	HEX	CV KEY(S)		COMMENTS
176	во			unused code
177	81			ji H
178	B2			H H
179	B3			и и
180	84			и и
181	85			11 M
182	B6			H II
183	B7			unused code
184	88	shift BACKSPACE	Y	(see NOTE 5)
185	89	shift TAB	N	(see NOTE 6)
186	BA			unused code

** end of COLECO special codes defined by group **

187

188

189

88

BC

BD

unused code

¹⁹⁰ ВE 191 BF

** N: 5 **

NOTE 1: The lock key will act as a "shift lock function," i.e., when in the active state (on) all keys will behave as if they were produced by their shifted key versions. Of course, where the lock key is inactive (off) all key depressions will be treated as normal unshifted key depressions. The foregoing description is analogous in operation to that of a standard keyboard.

NOTE 2: The remaining codes OCOH thru OEFH are unused codes.

NOTE 3: Codes OFOH thru OFFH are reserved for internal use by the keyboard software.

NOTE 4: The following keys have no code assigned to them, they are used internally by the keyboard software to calculate the key value, CNTRL, SHIFT and LOCK. No serial transmission occurs for these keys.

NOTE 5: Codes 008H and 088H are provided for purposes of non-destructive and destructive BACKSPACE. The interpretation of these codes are application dependent. It is recommended that the following convention be used:

OO8H = BACKSPACE (as defined by ASCII)
OB8H = destructive BACKSPACE

NOTE 6: Codes 009H and 089H are provided for purposes of right TAB and left TAB.

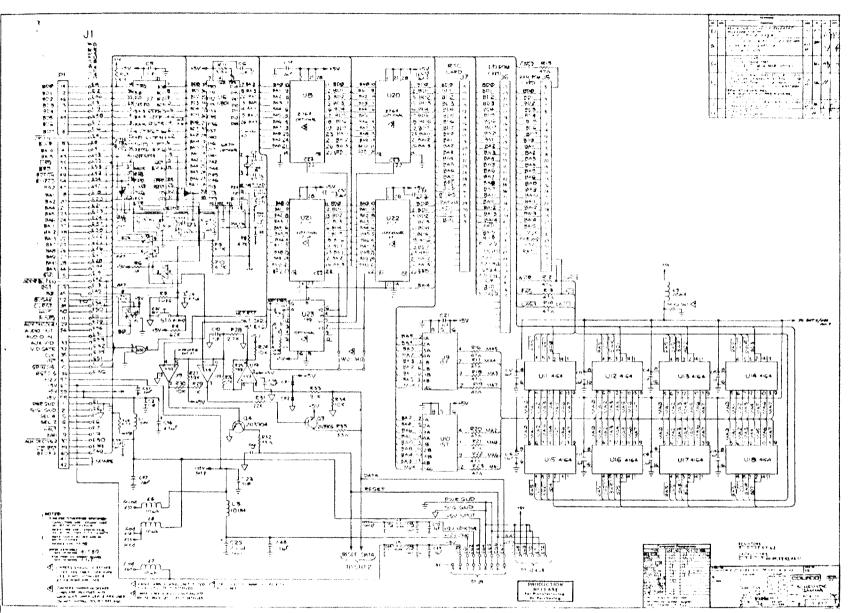
The interpretation of these codes are application dependent. It is recommended that the following convention be used:

OO9H = right TAB (as defined by ASCII) OB9H = left TAB

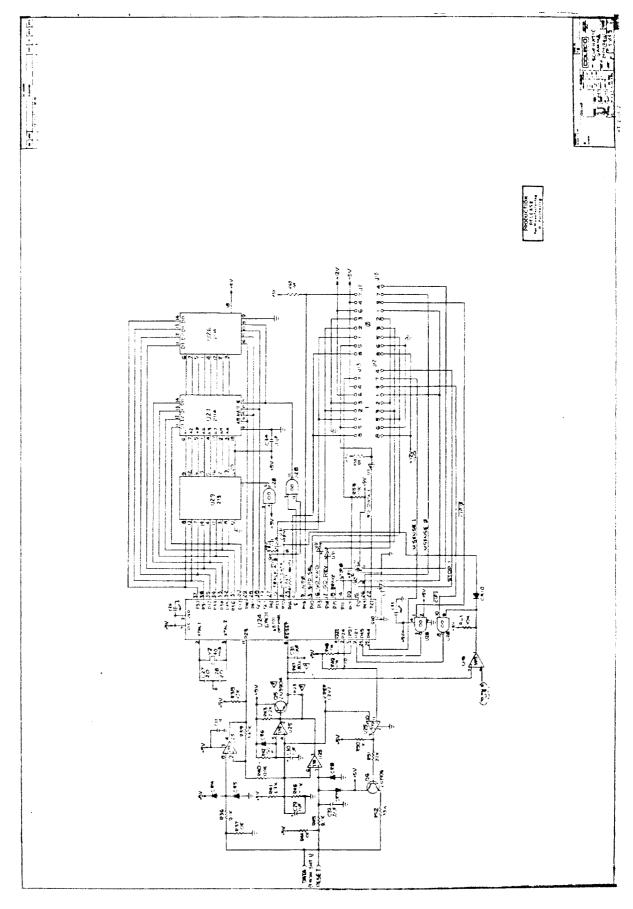
2. ADAM Emulation Considerations

ADAM hardware characteristics affect the selection and interface of an emulator for ADAM.

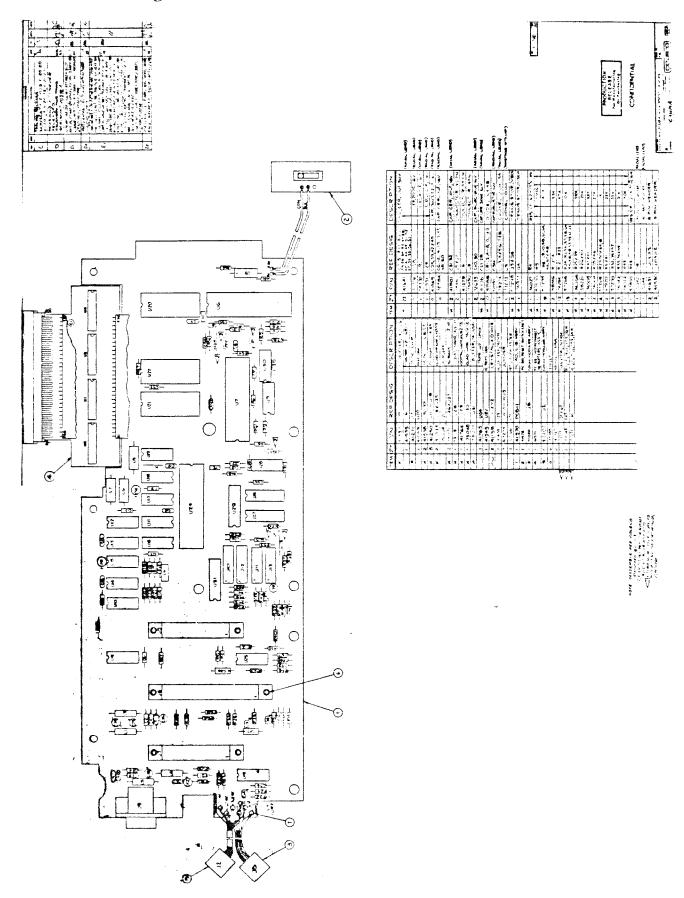
ADAM has dynamic RAMs that must be refreshed to maintain integrity. The RAMs require an 8-bit refresh. Since the Z80 performs a 7-bit refresh, the eighth bit is manufactured by the MIOC, using other signals from the Z80. In general, the signals are:

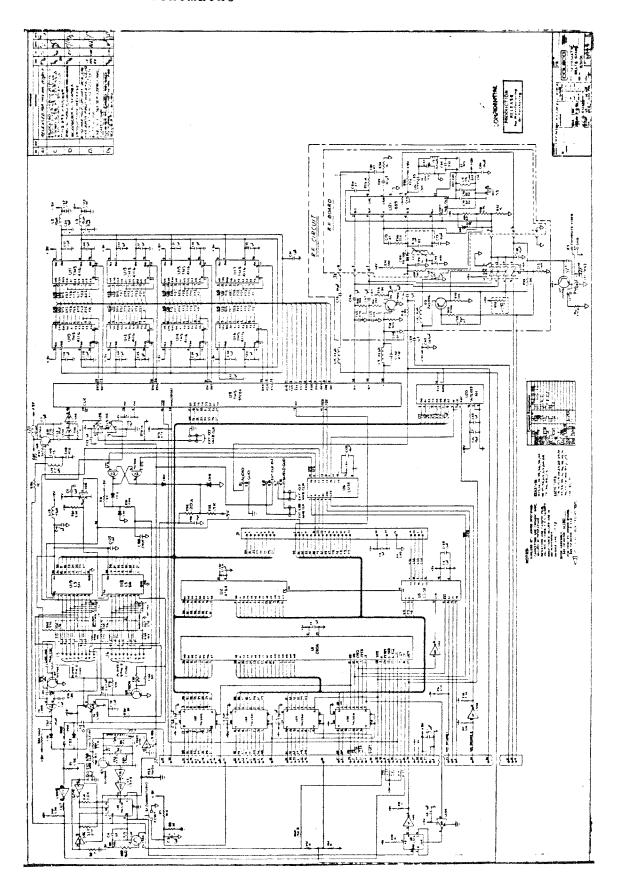

MREQ M1 WATT REFRESH (RAO - RA6) A7

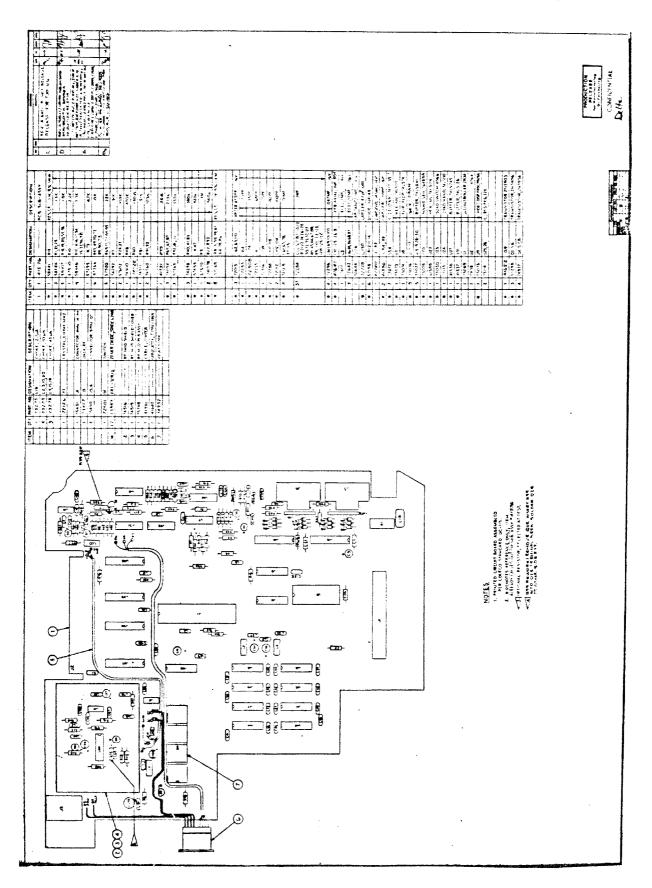
The Master 6801 performs a direct memory access into the 64K intrinsic RAM addressed by the Z80. The MTOC is responsible for the setup and execution of DMA by the Master 6801.

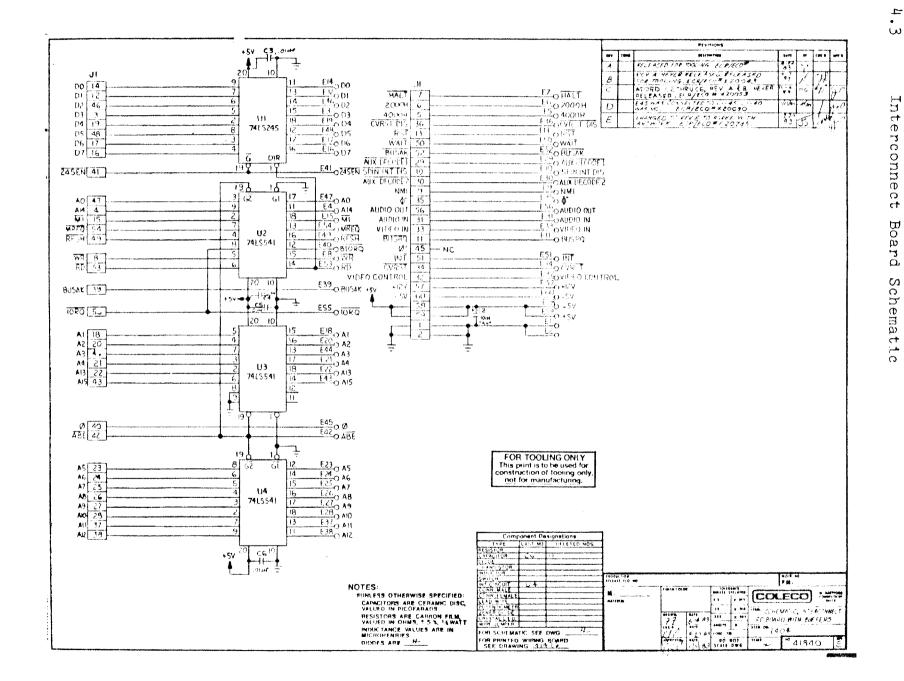

Some emulators place a load on the clock circuit that drives the Z80. Problems with an interface to an emulator may require a check of the clock and a modification to R60 on the CPU Board.

4. Schematics and Component Location/Identification Drawings

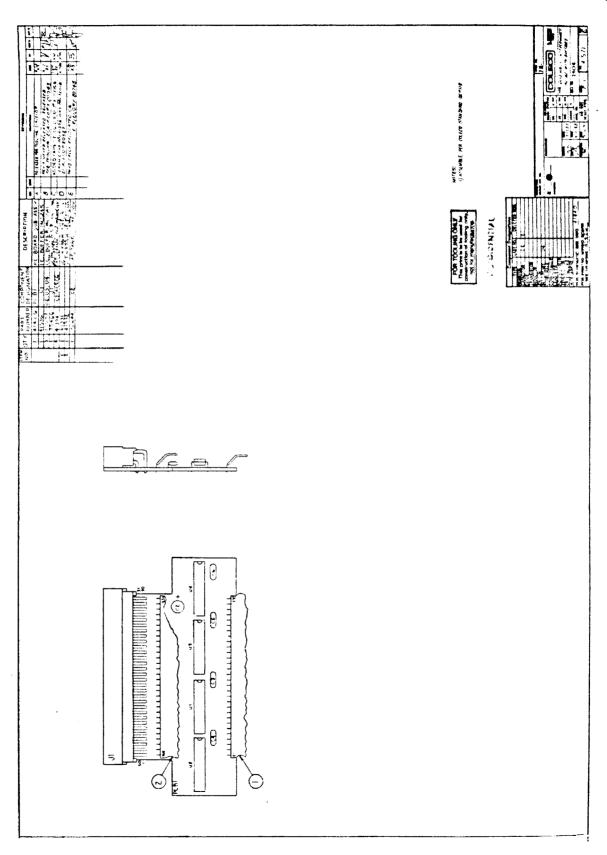

. Memo ўтy and Õ W SOB r a (A che ma + بقين O She ന († +-- $\overline{}$


4.1 Memory and I/O Board Schematic (Sheet 2)

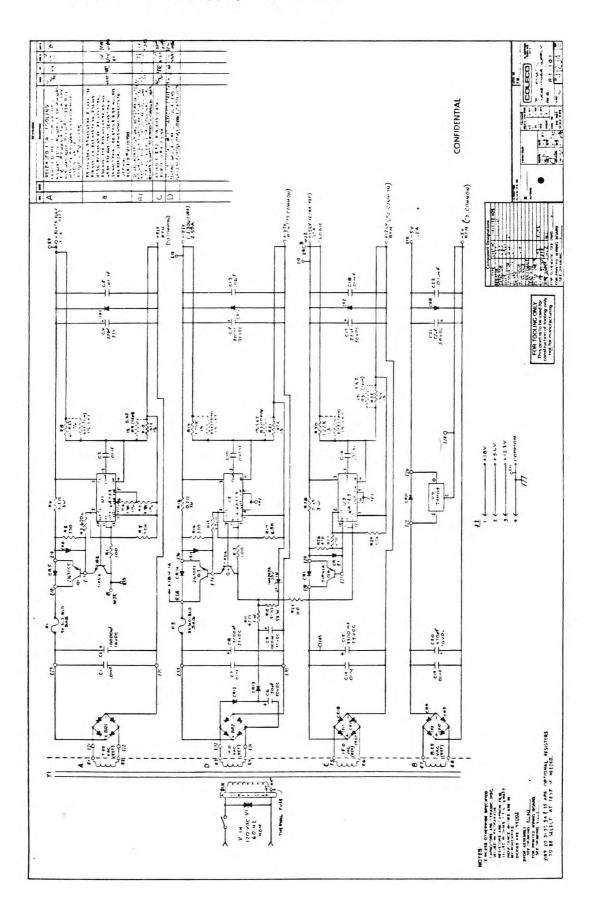

4.1 Memory and I/O Board Component Location/Identification Drawing

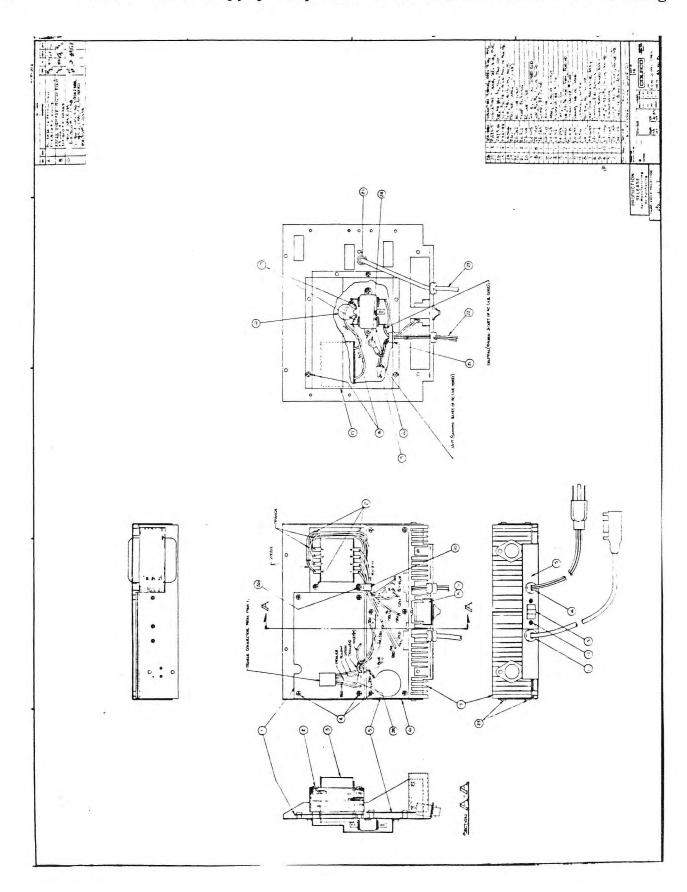


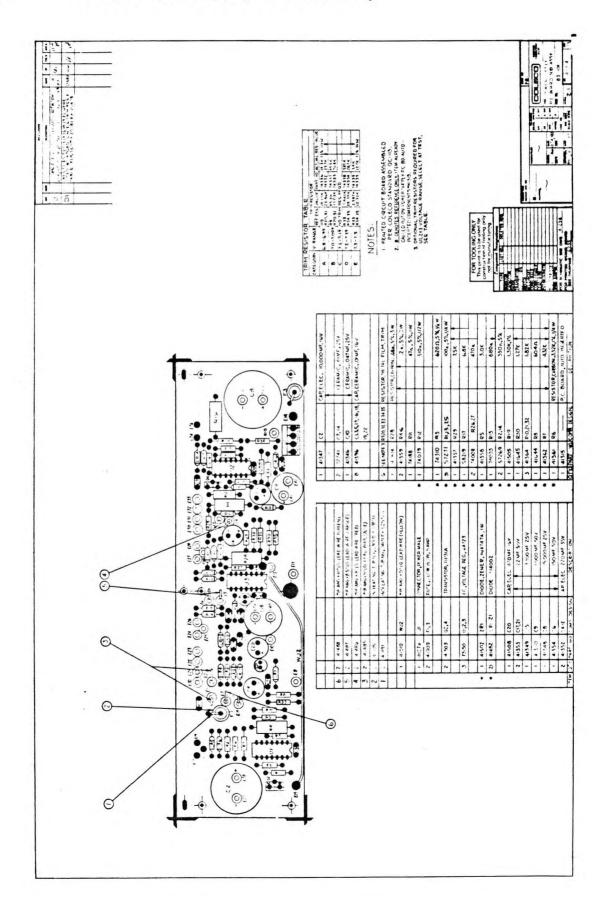
4.2 CPU Board Schematic



4.2 CPU Board Component Location/Identification Drawing




4.3 Interconnect Board Component Location/Identification Drawing


4.4 Linear Power Supply Schematic

4.4 Linear Power Supply Component Location/Identification Drawing

4.4 Linear Power Supply Sub-Assembly

